scholarly journals Jointed Plain Concrete Pavements in Airports: Structural–Economic Evaluation and Proposal for a Catalogue

2021 ◽  
Vol 6 (5) ◽  
pp. 73
Author(s):  
Paola Di Mascio ◽  
Alberto De Rubeis ◽  
Claudio De Marchis ◽  
Antonello Germinario ◽  
Giovanni Metta ◽  
...  

Although the design of jointed plain concrete pavements could be solved by commercial software, there is still a need for simple tools to be used in feasibility studies and preliminary cost–benefit analyses. This paper analyzed and verified jointed plain concrete pavements for airports composed of square slabs without tie and dowel bars. The examined slabs are laid on a cement-treated base layer and a stabilized granular subbase layer. The finite element software FAARFIELD was used to design the JPCP pavements when they are subjected to the design of the airplane (i.e., turboprop C-130J Hercules) under different conditions. Seven subgrade load bearing capacity values, twenty traffic levels, and two construction hypotheses (i.e., constant or variable thickness of the two deeper layers) were designed and then verified with the Westergaard theory in order to present a proposal for a catalogue. Finally, the construction cost per unit surface area was calculated for different construction methods of paving (by slip form paver or by fixed form). The obtained results provide a simple and fast procedure to design preliminary airport JPCPs.

Author(s):  
Ruohan Li ◽  
Jorge A. Prozzi

The objective of this study is to evaluate the field variability of jointed concrete pavement (JCP) faulting and its effects on pavement performance. The standard deviation of faulting along both the longitudinal and transverse directions are calculated. Based on these, the overall variability is determined, and the required sample sizes needed for a given precision at a certain confidence level are calculated and presented. This calculation is very important as state departments of transportation are required to report faulting every 0.1 mi to the Federal Highway Administration as required by the 2015 FAST Act. On average, twice the number of measurements are needed on jointed reinforced concrete pavements (JRCP) to achieve the same confidence and precision as on jointed plain concrete pavements (JPCP). For example, a sample size of 13 is needed to achieve a 95% confidence interval with a precision of 1.0 mm for average faulting of JPCP, while 26 measurements are required for JRCP ones. Average faulting was found to correlate with several climatic, structural, and traffic variables, while no significant difference was found between edge and outer wheelpath measurements. The application of Portland cement concrete overlay and the use of dowel bars (rather than aggregate interlock) are found to significantly reduce faulting. Older sections located on higher functional classes, and in regions of high precipitation or where the daily temperature change is larger, tend to have higher faulting, and might require larger samples sizes as compared with the rest when faulting surveys are to be conducted.


2019 ◽  
Vol 46 (7) ◽  
pp. 601-608
Author(s):  
Mena I. Souliman ◽  
Ashish Tripathi ◽  
Lubinda F. Walubita ◽  
Mayzan M. Isied

Joint sealing in jointed plain concrete pavement (JPCP) has been practiced throughout the world for many years as it improves the performance of concrete pavements. The infiltration of water is a common problem in concrete pavements and often increases distresses, such as faulting and pumping. For this reason, sealing the joints can help reduce water infiltration. Additionally, the infiltration of sand and small stones, aggregates, or debris into the joints can also be prevented, consequently reducing joint spalling in concrete pavements. However, it is also reported that joint sealing increases the initial cost of construction, especially if the joints need to be resealed, which leads to some additional costs. In this study, the pavement distress data was collected from the long-term pavement performance (LTPP) database for all the JPCPs sections in North Texas. The study illustrates the relative field performance in terms of spalling, faulting, roughness, and deflections of JPCP sections for both sealed and unsealed LTPP sections of North Texas.


2021 ◽  
Author(s):  
Bohuslav Slánský ◽  
Vit Šmilauer ◽  
Jiří Hlavatý ◽  
Richard Dvořák

A jointed plain concrete pavement represents a reliable, historically proven technical solution for highly loaded roads, highways, airports and other industrial surfaces. Excellent resistance to permanent deformations (rutting) and also durability and maintenance costs play key roles in assessing the economic benefits, rehabilitation plans, traffic closures, consumption and recycling of materials. In the history of concrete pavement construction, slow-to-normal hardening Portland cement was used in Czechoslovakia during the 1970s-1980s. The pavements are being replaced after 40-50 years of service, mostly due to vertical slab displacements due to missing dowel bars. However, pavements built after 1996 used rapid hardening cements, resulting in long-term surface cracking and decreased durability. In order to build durable concrete pavements, slower hardening slag-blended binders were designed and tested in the restrained ring shrinkage test and in isothermal calorimetry. Corresponding concretes were tested mainly for the compressive/tensile strength evolution and deicing salt-frost scaling to meet current specifications. The pilot project was executed on a 14 km highway, where a unique temperature-strain monitoring system was installed to provide long-term data from the concrete pavement. A thermo-mechanical coupled model served for data validation, showing a beneficial role of slower hydration kinetics. Continuous monitoring interim results at 24 months have revealed small curling induced by drying and the overall small differential shrinkage of the slab.


2021 ◽  
pp. 204141962110380
Author(s):  
Senthil Kasilingam ◽  
Muskaan Sethi ◽  
Loizos Pelecanos ◽  
Narinder K Gupta

An evaluation of mitigation strategies of underground tunnels against explosions is important to the society. Therefore, a small scale tunnel was modeled against blast loading using finite element software ABAQUS. The inelastic behavior of concrete and steel bar has been incorporated through concrete damage plasticity model and Johnson-cook models respectively, available in ABAQUS. The Drucker-Prager model as well as acoustic infinite medium have been used to model the damage behavior of soil and tunnel respectively. The simulated results thus obtained from the present study were compared with the experimental results available in the literature and found in good agreement. Further, the simulations were carried to predict the damage intensity in tunnel in terms of acceleration, impulse velocity, displacement, and Mises stresses. There are many parameters which were taken into consideration to assess the mitigation strategies for the underground tunnels. The critical parameters include the influence of tunnel shapes, lining materials, lining thickness, burial depth of the tunnels, inclusion of a barrier in between the blast source-the tunnel and layered configuration of tunnel lining, and were considered to evaluate the mitigation strategy. It was concluded that the square shape of tunnel was most vulnerable as compared to circular and U-shaped tunnels. It was also concluded that plain concrete monolithic lining as well as layered configuration consisting of Dytherm foam layer between Steel Fiber reinforced Concrete layers, was found to be more vulnerable among the chosen lining materials. Also, the thickness of lining and burial depth of the tunnel found to be a significant role against blast loading.


Author(s):  
Jianan Wang

This paper draws the following conclusions on the nature of time by analyzing the relationship between time and speed, the relationship between time and gravitational field, the gravitational redshift of the photon, and the black-body radiation theorem: Time on an object is proportional to the amount of energy flowing out (or in) per unit time (observer’s time) per unit surface area of the object. When an object radiates energy outward: t'=μB(T) =μσT 4=μnhν/st Where t’ is the time on the object, μ is a constant, B(T) is the radiosity,the total energy radiated from the unit surface area of the object in unit time (observer’s time), σ is the Stefan-Boltzmann constant, T is the absolute temperature, n is the number of the photons radiated, ν is the average frequency of the photons radiated, s is the surface area of the object and t is the time on the observer. When the object radiates energy outward, the higher the energy density of the space (for example the stronger the gravitational field of the space), the smaller the radiosity B(T) of the object in the space, the longer the average wavelength of the light quantum emitted by the object, the slower the time on the object, the longer the life of the system. When the object radiates energy outward, the faster the object moves relative to the ether, the higher the energy density of the local space in which the object is located, the smaller the radiosity B(T) of the object, the longer the average wavelength of the light quantum radiated by the object, the slower the time on the object, and the longer the life of the system. When the object radiates energy outward, the higher the temperature of the object, the greater the object's radiosity B(T), the shorter the average wavelength of the light quantum radiated by the object, the faster the time on the object, and the shorter the life of the system. Applying the above conclusions about the nature of time, the author analyzes the Mpemba effect and the inverse Mpemba effect, and reaches the following conclusion: the Mpemba effect is the time effect produced when heat flows from objects into space, and the "inverse" Mpemba effect is the time effect produced when heat flows from space into objects.


2013 ◽  
Vol 40 ◽  
pp. 1110-1117 ◽  
Author(s):  
Sung Woo Ryu ◽  
Hoon Ill Won ◽  
Seongcheol Choi ◽  
Moon C. Won

Author(s):  
Samir N. Shoukry

Nonlinear explicit three-dimensional finite element (3-D FE) modeling is used to investigate the performance of the falling weight deflectometer (FWD) test in the evaluation of layer moduli of jointed plain concrete pavements (JPCP) subjected to nonlinear thermal gradient through the slab thickness. Concrete slab separation from the base, in-plane friction at the concrete-base interface, the gravitational forces, and the interface characteristics between dowel bars and surrounding concrete are all represented in the 3-D FE model. Experimental verification of the model is obtained through comparison of the 3-D FE generated response to ( a) the FWD measured deflection basin and ( b) the measured response of an instrumented rigid pavement section located in Ohio to a loaded truck moving at 21.8 m/s (48 mph). Several cases of linear and nonlinear thermal gradients are applied to the model, and deflection basins are obtained. Two backcalculation programs, MODULUS 5.0 and EVERCALC 4.0, are used for prediction of the layer moduli in each case, and the values are compared. The results indicate that thermal curling of the slab due to negative thermal gradient has little effect on the accuracy of backcalculated moduli. Warping of the slab due to positive thermal gradient greatly influences the measured FWD deflection basin and leads to significant errors in the backcalculated moduli. These errors may be minimized if the time an FWD test is conducted falls between the late afternoon and midmorning (from 5:30 p.m. to 9:30 a.m. during summer in West Virginia).


2021 ◽  
Author(s):  
Alister Albert Suggust ◽  
Aizuddin Khalid ◽  
Mohammad Zulfiqar Usop ◽  
M Idraki M Khalil

Abstract The Balingian province is located offshore Sarawak, comprising of at least 7 oil fields with its regional geology consisting of a combination of deltaic & shoreface system. Though consisting of clastic reservoirs, the fields are highly sophisticated in terms of reservoir compartmentalization, hence uncertainties in fluid contacts, differing depletion strategies and varying production performance per well. As the regional production has gone into brownfield stage, the challenge is to determine the most suitable secondary recovery method to prolong field life. The subsurface & feasibility studies conducted produced mixed results between application of water & gas injection, giving recovery factors between 30 to 40%, and implementation so much depending on source of water & gas and cost benefit analyses. The application of IOR across Balingian province are executed in pilot mode across all fields. While the pilots are still continuing, this paper is to share the methodology, recovery factors and process of the regional study and some results from the ongoing surveillance post-execution, and the wayforward.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 217-224 ◽  
Author(s):  
K. Sato ◽  
H. Sakui ◽  
Y. Sakai ◽  
S. Tanaka

Water purification using artificial wetlands and aquatic macrophyte is attracting attention as a purification technology that can create rich ecosystems while imposing a minimal load on the environment. Because an aquatic plant system requires a large surface area, design specifications and maintenance methods that can obtain the optimum purification effect per unit surface area must be established. Large experimental facilities have been constructed beside a polluted river flowing into Lake Kasumigaura and have been used for a three-year experiment using several kinds of aquatic plants. This report summarizes the characteristics and the design load of the aquatic plant system based on this study and results from other aquatic plant facilities.


Author(s):  
William G. Davids

Issues related to the finite element modeling of base and subgrade materials under jointed plain concrete pavements are examined. The threedimensional finite element program EverFE, developed in conjunction with the Washington State Department of Transportation, was employed for the analyses. The relevant modeling capabilities of EverFE are detailed, including the ability to model multiple foundation layers, the incorporation of loss of contact between slab and base, and the efficient iterative solution strategies that make large three-dimensional finite element analyses possible on desktop computers. The results of parametric studies examining the effects of foundation type (layered elastic and dense liquid) and properties on the response of jointed plain concrete pavements subjected to axle and thermal loads are presented. Special attention is paid to the interactions between joint load transfer effectiveness and foundation type, and joint load transfer is shown to change significantly with different foundation models and properties. A consideration of simultaneous thermal and axle loadings indicates that the effect of foundation type and properties on critical slab stresses caused by edge loading and a positive temperature gradient is relatively small. However, the slab response is quite sensitive to foundation type for a combined negative temperature gradient and corner loading. On the basis of these results, use of an equivalent dense liquid foundation modulus in mechanistic rigid pavement analysis or design is not recommended when stiff base layers are present.


Sign in / Sign up

Export Citation Format

Share Document