scholarly journals Characterisation of Permanent Deformation Behaviour of Asphalt Mix Based on a Combined Elastic Plastic (CEP) Parameter

2021 ◽  
Vol 6 (12) ◽  
pp. 183
Author(s):  
Abhirup B. Roy-Chowdhury ◽  
Mofreh F. Saleh ◽  
Miguel Moyers-Gonzalez

Permanent deformation or rutting is a major mode of failure in Hot Mix Asphalt (HMA) pavements. The binder used in the asphalt mixture plays an important role in the rutting resistance performance of the mixture. Currently, the Superpave rutting parameter and a more advanced test called multiple stress creep and recovery (MSCR) are the most widely used tests for rutting characterisation of asphalt binders. However, they both have their own merits and demerits. This study was undertaken to introduce a combined Elastic-Plastic (CEP) parameter as an additional binder rheological rutting parameters. The study also aimed at investigating the applicability and potential of this parameter to supplement the existing binder rheological parameters to characterise the properties of asphalt binder related to HMA rutting performance. Additionally, the correlations of the binder rheological parameters with the asphalt mix rutting parameters generated by the dynamic creep and the dynamic modulus tests were investigated. For the polymer-modified binders, Styrene-Butadiene-Styrene (SBS) was added to the PG 70-16 binder at two concentration levels (4, and 6% by the mass of the binder). A dense-graded HMA AC 14 was tested in the Dynamic Modulus (DM) and Dynamic Creep (DC) tests for evaluating the rutting performance. The CEP parameter was found to be much more reliable than the traditional G*/sin (δ) and the non-recoverable creep compliance (Jnr) parameters for evaluating the rutting behaviour of polymer modified asphalt binders, evident from better correlations of CEP with the asphalt mix performance. Unlike Jnr, the CEP parameter revealed a wider range of values, which is comparable with asphalt mixture test results.

2014 ◽  
Vol 599 ◽  
pp. 244-247 ◽  
Author(s):  
Qun Shan Ye ◽  
Chang Jian Ye ◽  
Zhi Lin Sun

Viscosity test, dynamic shear test, dynamic modulus test and creep test were conducted to investigate the rheological properties of high modulus asphalt and its mixture. Test results indicated that the viscosity of hard grade asphalt could be increased when compared with the ordinary asphalt, especially at high temperatures. The complex shear modulus and dynamic modulus of hard-grade asphalt binder and its mixture were increased, which implied that the stiffness of them was enhanced. Furthermore, the elastically portions for viscoelastic property of asphalt binders were increased, which resulted in the reduction of phase angle for hard grade asphalt binders and mixtures. The rutting parameter for hard-grade asphalt mixture was increased remarkably, which revealed that the resistance to permanent deformation could be significantly improved for hard grade asphalt mixture.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Hui Yao ◽  
Zhanping You

The objectives of this research are to use micro- and nanomaterials to modify the asphalt mixture and to evaluate the mechanical performance of asphalt mixtures. These micro- and nanomaterials, including carbon microfiber, Nanomer material, nanosilica, nonmodified nanoclay, and polymer modified nanoclay, were selected to blend with the control asphalt to improve the overall performance of the modified asphalt binders and mixtures. The microstructures of original materials and asphalt binders were observed by the field emission scanning electron microscope (FE-SEM). The mixture performance tests were employed to evaluate the resistance to rutting and permanent deformation of the modified asphalt mixtures. Test results indicate that(1)the dynamic modulus of micro- and nanomodified asphalt mixtures improved significantly;(2)the rutting susceptibility of the modified asphalt mixtures was reduced significantly compared to that of the control asphalt mixture;(3)the microstructures of modified asphalt binders were different from the control asphalt, and the structures determine the improvement in the performance of modified asphalt mixtures. These results indicate that the addition of micro- and nanomaterials enhanced the rutting performance and strength of asphalt mixtures. In addition, the analysis of variance (ANOVA) was used to analyze the modifying effects of micro- and nanomaterials on the performance.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2084 ◽  
Author(s):  
Piotr Mackiewicz ◽  
Antoni Szydło

We present two methods used in the identification of viscoelastic parameters of asphalt mixtures used in pavements. The static creep test and the dynamic test, with a frequency of 10 Hz, were carried out based on the four-point bending beam (4BP). In the method identifying viscoelastic parameters for the Brugers’ model, we included the course of a creeping curve (for static creep) and fatigue hysteresis (for dynamic test). It was shown that these parameters depend significantly on the load time, method used, and temperature and asphalt content. A similar variation of parameters depending on temperature was found for the two tests, but different absolute values were obtained. Additionally, the share of viscous deformations in relation to total deformations is presented, on the basis of back calculations and finite element methods. We obtained a significant contribution of viscous deformations (about 93% for the static test and 25% for the dynamic test) for the temperature 25 °C. The received rheological parameters from both methods appeared to be sensitive to a change in asphalt content, which means that these methods can be used to design an optimal asphalt mixture composition—e.g., due to the permanent deformation of pavement. We also found that the parameters should be determined using the creep curve for the static analyses with persistent load, whereas in the case of the dynamic studies, the hysteresis is more appropriate. The 4BP static creep and dynamic tests are sufficient methods for determining the rheological parameters for materials designed for flexible pavements. In the 4BP dynamic test, we determined relationships between damping and viscosity coefficients, showing material variability depending on the test temperature.


2013 ◽  
Vol 723 ◽  
pp. 353-360
Author(s):  
Li Bo Gao ◽  
Xing Hua Fan ◽  
Ming Gao ◽  
Feng Cheng Wang

This paper has studied the mechanical properties (freeze-thaw splitting strength, and dynamic modulus) and road performance (dynamic creep and fatigue life) of the asphalt mixture under the freeze-thaw circle test, and made the quantitative analysis of the influence on the material performance under freeze-thaw circle test.


2015 ◽  
Vol 76 (14) ◽  
Author(s):  
Meor Othman Hamzah ◽  
Seyed Reza Omranian

Many factors affect pavement service life. Aging as one of these factors occurs due to binder volatilization and oxidation. Aging increases binder viscosity and subsequently results in stiffer mixtures. Transportation of asphalt mixture from plant to field may cause variations in the levels of aging. This study attempts to determine the effects of aging on mixture permanent deformation or rutting during transportation from plant to field and to simulate the aging conditions in the laboratory. The rutting parameters evaluated include creep stiffness, cumulative strain, creep modulus and creep rates of mixtures collected from plant, field and samples artificially produced in the laboratory. The results showed that temperature increment significantly changed mixtures rutting properties, while aging during mixture transportation from plant to field has no effect on rutting. It was also found that artificially aging the mixtures by varying aging duration that conducted for this study, cannot exactly simulate the plant and field aging conditions. 


2016 ◽  
Vol 16 ◽  
pp. 69-81 ◽  
Author(s):  
Muhammad Karami ◽  
Ainalem Nega ◽  
Ahdyeh Mosadegh ◽  
Hamid Nikraz

The main objective this study is to evaluate the permanent deformation of buton rock asphalt (BRA) modified asphalt paving mixtures using dynamic creep test so that long term deformation behavior of asphalt mixtures can be characterized. The dynamic creep test was conducted on unmodified and BRA modified asphalt mixture using UTM25 machine. Asphalt cement of C170 from a regional supplier in Western Australia was used as the base asphalt binder for unmodified asphalt mixture; and BRA modified asphalt mixtures were made by substituting the base asphalt with 10, 20, and 30% (by weight of total asphalt binder) natural binder continuing granular BRA modified binder. The granular (pellets) BRA modified binder with a diameter of 7-10 mm was produced and extracted according the Australia Standard. Crushed granite was taken from a local quarry of the region; and dense graded for both unmodified and BRA modified asphalt mixture with the nominal size of 10 mm was used. The results of this analysis showed that BRA modified had a good performance as compared with unmodified asphalt mixtures, and increase in the content modified binder to 10%, 20%, and 30% resulted in decrease of the total permanent strain.


Sign in / Sign up

Export Citation Format

Share Document