scholarly journals A Sustainable Slit Jet FTIR Spectrometer for Hydrate Complexes and Beyond

Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Hannes C. Gottschalk ◽  
Taija L. Fischer ◽  
Volker Meyer ◽  
Reinhard Hildebrandt ◽  
Ulrich Schmitt ◽  
...  

Fourier transform infrared (FTIR) absorption spectroscopy of cold molecules and clusters in supersonic slit jet expansions complements and extends more sensitive action spectroscopy techniques and provides important reference data for the latter. We describe how its major drawback, large substance and carrier gas consumption, can be alleviated by one to two orders of magnitude via direct and continuous recycling of the gas mixture. This is achieved by a combination of dry rotary lobe and screw pump compression. The signal-to-noise ratio is boosted by the established buffered giant gas pulse technique with full interferogram synchronization. The buildup of water impurities typically limits the recycling gain, but is turned into a feature for the study of hydrate complexes of volatile molecules. Continuous operation with a single gas filling over several days becomes practical and useful. Decadic absorbances in the low ppm range are detectable and the mid infrared range can be recorded simultaneously with the near infrared. The less straightforward hydration number assignment of spectral features in direct absorption spectroscopy is supported by a gradual water buildup at a rate of less than 0.5 mg/h. A recent reassignment proposal for the water dimer OH stretching spectrum is refuted and vibrational spectra of vacuum-isolated 18O-water clusters are presented for the first time. Methanol docking on asymmetric ketones is used to illustrate the advantages and limitations of the recycling concept. Previous assignments of the hydrate complex of 1-phenylethanol are confirmed. Additional features of the setup await testing and refinement, but the recycling technique already substantially widens the applicability of direct absorption spectroscopy of neutral molecular clusters. It may be attractive for other high-throughput jet spectrometers.

Author(s):  
Hannes Gottschalk ◽  
Taija Fischer ◽  
Volker Meyer ◽  
Reinhard Hildebrandt ◽  
Ulrich Schmitt ◽  
...  

Fourier transform infrared (FTIR) absorption spectroscopy of cold molecules and clusters in supersonic slit jet expansions complements and extends more sensitive action spectroscopy techniques and provides important reference data for the latter. We describe how its major drawback, large substance and carrier gas consumption, can be alleviated by one to two orders of magnitude via direct and continuous recycling of the gas mixture. This is achieved by a combination of dry rotary lobe and screw pump compression. The signal-to-noise ratio is boosted by the established buffered giant gas pulse technique with full interferogram synchronization. The buildup of water impurities typically limits the recycling gain, but is turned into a feature for the study of hydrate complexes of volatile molecules. Continuous operation with a single gas filling over several days becomes practical and useful. Decadic absorbances in the low ppm range are detectable and the mid infrared range can be recorded simultaneously with the near infrared. The less straightforward hydration number assignment of spectral features in direct absorption spectroscopy is supported by a gradual water buildup at a rate of less than 0.5 mg/h. A recent reassignment proposal for the water dimer OH stretching spectrum is refuted and vibrational spectra of vacuum-isolated 18O-water clusters are presented for the first time. Methanol docking on asymmetric ketones is used to illustrate the advantages and limitations of the recycling concept. Previous assignments of the hydrate complex of 1-phenylethanol are confirmed. Additional features of the setup await testing and refinement, but the recycling technique already substantially widens the applicability of direct absorption spectroscopy of neutral molecular clusters. It may be attractive for other high-throughput jet spectrometers.


2015 ◽  
Vol 23 (1) ◽  
Author(s):  
A. Montori ◽  
M. De Pas ◽  
M. Giuntini ◽  
M. Siciliani De Cumis ◽  
S. Viciani ◽  
...  

Abstract We describe an all−in−fibre apparatus for Constant Intensity Direct Absorption Spectroscopy (CIDAS) for gas concentration measurements which keeps the power of a diode laser constant along the frequency sweep. The reduction of the large variation of the laser power, connected to the frequency scan, enhances the ability of detecting small variations in a background signal, resulting in an increase of the sensitivity with respect to standard direct absorption techniques. Moreover, CIDAS allows for a real−time observation of the absorption signals without any kind of post−detection processing. The apparatus has been tested with carbon dioxide (CO


2020 ◽  
Vol 130 ◽  
pp. 106344 ◽  
Author(s):  
Mohsin Raza ◽  
Liuhao Ma ◽  
Chenyu Yao ◽  
Min Yang ◽  
Zhen Wang ◽  
...  

2009 ◽  
Vol 131 (20) ◽  
pp. 204312 ◽  
Author(s):  
A. Moudens ◽  
R. Georges ◽  
M. Goubet ◽  
J. Makarewicz ◽  
S. E. Lokshtanov ◽  
...  

2000 ◽  
Vol 71 (4) ◽  
pp. 1811-1815 ◽  
Author(s):  
Harold Linnartz ◽  
Dorinel Verdes ◽  
Thomas Speck

Sign in / Sign up

Export Citation Format

Share Document