scholarly journals The Role of POPDC Proteins in Cardiac Pacemaking and Conduction

2021 ◽  
Vol 8 (12) ◽  
pp. 160
Author(s):  
Lena Gruscheski ◽  
Thomas Brand

The Popeye domain-containing (POPDC) gene family, consisting of Popdc1 (also known as Bves), Popdc2, and Popdc3, encodes transmembrane proteins abundantly expressed in striated muscle. POPDC proteins have recently been identified as cAMP effector proteins and have been proposed to be part of the protein network involved in cAMP signaling. However, their exact biochemical activity is presently poorly understood. Loss-of-function mutations in animal models causes abnormalities in skeletal muscle regeneration, conduction, and heart rate adaptation after stress. Likewise, patients carrying missense or nonsense mutations in POPDC genes have been associated with cardiac arrhythmias and limb-girdle muscular dystrophy. In this review, we introduce the POPDC protein family, and describe their structure function, and role in cAMP signaling. Furthermore, the pathological phenotypes observed in zebrafish and mouse models and the clinical and molecular pathologies in patients carrying POPDC mutations are described.

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1594 ◽  
Author(s):  
Johanna Ndamwena Amunjela ◽  
Alexander H. Swan ◽  
Thomas Brand

The Popeye domain containing (POPDC) gene family consists of POPDC1 (also known as BVES), POPDC2 and POPDC3 and encodes a novel class of cyclic adenosine monophosphate (cAMP) effector proteins. Despite first reports of their isolation and initial characterization at the protein level dating back 20 years, only recently major advances in defining their biological functions and disease association have been made. Loss-of-function experiments in mice and zebrafish established an important role in skeletal muscle regeneration, heart rhythm control and stress signaling. Patients suffering from muscular dystrophy and atrioventricular block were found to carry missense and nonsense mutations in either of the three POPDC genes, which suggests an important function in the control of striated muscle homeostasis. However, POPDC genes are also expressed in a number of epithelial cells and function as tumor suppressor genes involved in the control of epithelial structure, tight junction formation and signaling. Suppression of POPDC genes enhances tumor cell proliferation, migration, invasion and metastasis in a variety of human cancers, thus promoting a malignant phenotype. Moreover, downregulation of POPDC1 and POPDC3 expression in different cancer types has been associated with poor prognosis. However, high POPDC3 expression has also been correlated to poor clinical prognosis in head and neck squamous cell carcinoma, suggesting that POPDC3 potentially plays different roles in the progression of different types of cancer. Interestingly, a gain of POPDC1 function in tumor cells inhibits cell proliferation, migration and invasion thereby reducing malignancy. Furthermore, POPDC proteins have been implicated in the control of cell cycle genes and epidermal growth factor and Wnt signaling. Work in tumor cell lines suggest that cyclic nucleotide binding may also be important in epithelial cells. Thus, POPDC proteins have a prominent role in tissue homeostasis and cellular signaling in both epithelia and striated muscle.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Development ◽  
2021 ◽  
Vol 148 (5) ◽  
pp. dev196899
Author(s):  
Guangqin Wang ◽  
Chao Li ◽  
Shunji He ◽  
Zhiyong Liu

ABSTRACTCRISPR-stop converts protein-coding sequences into stop codons, which, in the appropriate location, results in a null allele. CRISPR-stop induction in one-cell-stage zygotes generates Founder 0 (F0) mice that are homozygous mutants; this avoids mouse breeding and serves as a rapid screening approach for nonlethal genes. However, loss of function of 25% of mammalian genes causes early lethality. Here, we induced CRISPR-stop in one of the two blastomeres of the zygote, a method we name mosaic CRISPR-stop, to produce mosaic Atoh1 and Sox10 F0 mice; these mice not only survived longer than regular Atoh1/Sox10 knockout mice but also displayed their recognized cochlear phenotypes. Moreover, by using mosaic CRISPR-stop, we uncovered a previously unknown role of another lethal gene, Rbm24, in the survival of cochlear outer hair cells (OHCs), and we further validated the importance of Rbm24 in OHCs by using our Rbm24 conditional knockout model. Together, our results demonstrated that mosaic CRISPR-stop is reliable and rapid, and we believe this method will facilitate rapid genetic screening of developmentally lethal genes in the mouse inner ear and also in other organs.


2020 ◽  
Author(s):  
Amy J Tibbo ◽  
Sara Dobi ◽  
Aisling McFall ◽  
Gonzalo S Tejeda ◽  
Connor Blair ◽  
...  

AbstractCyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that Popeye proteins exist in complexes with members of the PDE4 family in cardiac myocytes thus restricting cAMP signaling. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 is essential to maintain action potential duration in beating cardiac myocytes.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Joanne M. Hildebrand ◽  
Bernice Lo ◽  
Sara Tomei ◽  
Valentina Mattei ◽  
Samuel N. Young ◽  
...  

AbstractMaturity-onset diabetes of the young, MODY, is an autosomal dominant disease with incomplete penetrance. In a family with multiple generations of diabetes and several early onset diabetic siblings, we found the previously reported P33T PDX1 damaging mutation. Interestingly, this substitution was also present in a healthy sibling. In contrast, a second very rare heterozygous damaging mutation in the necroptosis terminal effector, MLKL, was found exclusively in the diabetic family members. Aberrant cell death by necroptosis is a cause of inflammatory diseases and has been widely implicated in human pathologies, but has not yet been attributed functions in diabetes. Here, we report that the MLKL substitution observed in diabetic patients, G316D, results in diminished phosphorylation by its upstream activator, the RIPK3 kinase, and no capacity to reconstitute necroptosis in two distinct MLKL−/− human cell lines. This MLKL mutation may act as a modifier to the P33T PDX1 mutation, and points to a potential role of impairment of necroptosis in diabetes. Our findings highlight the importance of family studies in unraveling MODY’s incomplete penetrance, and provide further support for the involvement of dysregulated necroptosis in human disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria I. Alvarez-Vergara ◽  
Alicia E. Rosales-Nieves ◽  
Rosana March-Diaz ◽  
Guiomar Rodriguez-Perinan ◽  
Nieves Lara-Ureña ◽  
...  

AbstractThe human Alzheimer’s disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhimei Qiu ◽  
Yan Wang ◽  
Weiwei Liu ◽  
Chaofu Li ◽  
Ranzun Zhao ◽  
...  

AbstractAutophagy and apoptosis are involved in myocardial ischemia/reperfusion (I/R) injury. Research indicates that circular RNA HIPK3 (circHIPK3) is crucial to cell autophagy and apoptosis in various cancer types. However, the role of circHIPK3 in the regulation of cardiomyocyte autophagy and apoptosis during I/R remains unknown. Our study aimed to examine the regulatory effect of circHIPK3 during myocardial I/R and investigate its mechanism in cardiomyocyte autophagy and apoptosis. Methods and results. The expression of circHIPK3 was upregulated during myocardial I/R injury and hypoxia/reoxygenation (H/R) injury of cardiomyocytes. To study the potential role of circHIPK3 in myocardial H/R injury, we performed gain-of-function and loss-of-function analyses of circHIPK3 in cardiomyocytes. Overexpression of circHIPK3 significantly promoted H/R-induced cardiomyocyte autophagy and cell injury (increased intracellular reactive oxygen species (ROS) and apoptosis) compared to those in the control group, while silencing of circHIPK3 showed the opposite effect. Further research found that circHIPK3 acted as an endogenous miR-20b-5p sponge to sequester and inhibit miR-20b-5p activity, resulting in increased ATG7 expression. In addition, miR-20b-5p inhibitors reversed the decrease in ATG7 induced by silencing circHIPK3. Conclusions. CircHIPK3 can accelerate cardiomyocyte autophagy and apoptosis during myocardial I/R injury through the miR-20b-5p/ATG7 axis. These data suggest that circHIPK3 may serve as a potential therapeutic target for I/R.


2021 ◽  
Vol 296 ◽  
pp. 100395
Author(s):  
Tzu-Chieh Chen ◽  
Taiyi Kuo ◽  
Mohamad Dandan ◽  
Rebecca A. Lee ◽  
Maggie Chang ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 706
Author(s):  
Angela Sparago ◽  
Flavia Cerrato ◽  
Laura Pignata ◽  
Francisco Cammarata-Scalisi ◽  
Livia Garavelli ◽  
...  

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder characterized by prenatal and/or postnatal overgrowth, organomegaly, abdominal wall defects and tumor predisposition. CDKN1C is a maternally expressed gene of the 11p15.5 chromosomal region and is regulated by the imprinting control region IC2. It negatively controls cellular proliferation, and its expression or activity are frequently reduced in BWS. In particular, loss of IC2 methylation is associated with CDKN1C silencing in the majority of sporadic BWS cases, and maternally inherited loss-of-function variants of CDKN1C are the most frequent molecular defects of familial BWS. We have identified, using Sanger sequencing, novel CDKN1C variants in three families with recurrent cases of BWS, and a previously reported variant in a woman with recurrent miscarriages with exomphalos. Clinical evaluation of the patients showed variable manifestation of the disease. The frameshift and nonsense variants were consistently associated with exomphalos, while the missense variant caused a less severe phenotype. Pregnancy loss and perinatal lethality were found in the families segregating nonsense mutations. Intrafamilial variability of the clinical BWS features was observed, even between siblings. Our data are indicative of severe BWS phenotypes that, with variable expressivity, may be associated with both frameshift and nonsense variants of CDKN1C.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii401-iii401
Author(s):  
Sarah Injac ◽  
L Frank Huang ◽  
Stephen Mack ◽  
Frank Braun ◽  
Yuchen Du ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Despite major advances in our understanding of the biology of MB, novel treatments remain urgently needed. Using a chemical-genomics driven drug repositioning strategy, we identified the cardiac glycoside family of compounds as potential treatments for Group 3 MB. We subsequently demonstrated that single-agent treatment with digoxin prolongs survival in a patient-derived xenograft model (PDOX) of Group 3 MB to a degree comparable to radiation therapy, a mainstay in the treatment of MB. Finally, we examined the mechanism of digoxin-mediated cell killing using RNA-seq. This work identified LHX9, a member of the LIM homeobox family of transcription factors, as the gene most significantly down-regulated following treatment (Huang and Injac et al, Sci Trans Medicine, 2018). Homologs of LHX9 play key roles in cerebellar development via spatially and temporally restricted expression and LHX9 has been proposed as a core transcription factor (TF) in the regulatory circuitry of Group 3 tumors. Loss of function of other core TFs has been shown to impact MB growth. The role of LHX9 in MB, however, has not been previously experimentally evaluated. We now report that knockdown of LHX9 in MB-derived cell lines results in marked growth inhibition raising the possibility that loss of LHX9 plays a major role in digoxin-mediated cell killing and that LHX9 represents a key dependency required for the growth of Group 3 MB. Clinical targeting of core TFs would represent a novel approach to targeting this devastating disease.


Sign in / Sign up

Export Citation Format

Share Document