scholarly journals Two Novel Variants in YARS2 Gene Are Responsible for an Extended MLASA Phenotype with Pancreatic Insufficiency

2021 ◽  
Vol 10 (16) ◽  
pp. 3471
Author(s):  
Lidia Carreño-Gago ◽  
Diana Luz Juárez-Flores ◽  
Josep Maria Grau ◽  
Javier Ramón ◽  
Ester Lozano ◽  
...  

Pathogenic variants in the mitochondrial tyrosyl-tRNA synthetase gene (YARS2) were associated with myopathy, lactic acidosis, and sideroblastic anemia (MLASA). However, patients can present mitochondrial myopathy, with exercise intolerance and muscle weakness, leading from mild to lethal phenotypes. Genes implicated in mtDNA replication were studied by Next Generation Sequencing (NGS) and whole exome sequence with the TruSeq Rapid Exome kit (Illumina, San Diego, CA, USA). Mitochondrial protein translation was studied following the Sasarman and Shoubridge protocol and oxygen consumption rates with Agilent Seahorse XF24 Analyzer Mitostress Test, (Agilent, Santa Clara, CA, USA). We report two siblings with two novel compound heterozygous pathogenic variants in YARS2 gene: a single nucleotide deletion in exon 1, c.314delG (p.(Gly105Alafs*4)), which creates a premature stop codon in the amino acid 109, and a single nucleotide change in exon 5 c.1391T>C (p.(Ile464Thr)), that cause a missense variant in amino acid 464. We demonstrate the pathogenicity of these new variants associated with reduced YARS2 mRNA transcript, reduced mitochondrial protein translation and dysfunctional organelle function. These pathogenic variants are responsible for late onset MLASA, herein accompanied by pancreatic insufficiency, observed in both brothers, clinically considered as Pearson’s syndrome. Molecular study of YARS2 gene should be considered in patients presenting Pearson’s syndrome characteristics and MLASA related phenotypes.

2021 ◽  
Vol 11 (3) ◽  
pp. 122-128
Author(s):  
Priya Bhardwaj ◽  
Christoffer Rasmus Vissing ◽  
Niels Kjær Stampe ◽  
Kasper Rossing ◽  
Alex Hørby Christensen ◽  
...  

Background: AARS2 encodes the mitochondrial protein alanyl-tRNA synthetase 2 (MT-AlaRS), an important enzyme in oxidative phosphorylation. Variants in AARS2 have previously been associated with infantile cardiomyopathy. Case summary: A 4-year-old girl died of infantile-onset dilated cardiomyopathy (DCM) in 1996. Fifteen years later, her 21-year-old brother was diagnosed with DCM and ultimately underwent heart transplantation. Initial sequencing of 15 genes discovered no pathogenic variants in the brother at the time of his diagnosis. However, 9 years later re-screening in an updated screening panel of 129 genes identified a homozygous AARS2 (c.1774C > T) variant. Sanger sequencing of the deceased girl confirmed her to be homozygous for the AARS2 variant, while both parents and a third sibling were all found to be unaffected heterozygous carriers of the AARS2 variant. Discussion: This report underlines the importance of repeated and extended genetic screening of elusive families with suspected hereditary cardiomyopathies, as our knowledge of disease-causing mutations continuously grows. Although identification of the genetic etiology in the reported family would not have changed the clinical management, the genetic finding allows genetic counselling and holds substantial value in identifying at-risk relatives.


2021 ◽  
Author(s):  
Yuka Murofushi ◽  
Itaru Hayakawa ◽  
Yuichi Abe ◽  
Tatsuyuki Ohto ◽  
Kei Murayama ◽  
...  

Abstract KARS encodes lysyl-tRNA synthetase, which is essential for protein translation. KARS mutations sometimes cause impairment of cytoplasmic and mitochondrial protein synthesis, and sometimes lead to progressive leukodystrophies with mitochondrial signature and psychomotor regression, and follow a rapid regressive course to premature death. There has been no disease-modifying therapy beyond supportive treatment. We present a 5-year-old male patient with an asymmetrical leukodystrophy who showed overt evidence of mitochondrial dysfunction, including elevation of lactate on brain MR spectroscopy and low oxygen consumption rate in fibroblasts. We diagnosed this patient's condition as KARS-related leukodystrophy with cerebral calcification, congenital deafness, and evidence of mitochondrial dysfunction. We employed a ketogenic diet as well as multiple vitamin supplementation with the intention to alleviate mitochondrial dysfunction. The patient showed alleviation of his psychomotor regression and even partial restoration of his abilities within 4 months. This is an early report of a potential disease-modifying therapy for KARS-related progressive leukodystrophy without appreciable adverse effects.


1993 ◽  
Vol 70 (04) ◽  
pp. 636-641 ◽  
Author(s):  
Masaru Ido ◽  
Michiaki Ohiwa ◽  
Tatsuya Hayashi ◽  
Junji Nishioka ◽  
Tsuyoshi Hatada ◽  
...  

SummaryWe report genetic abnormalities of protein C gene in a male infant who developed neonatal purpura fulminans. DNA-sequence analysis of all exons in protein C gene in this family revealed two mutations. The first abnormality, derived from the mother, was a deletion of one of four consecutive G at nucleotide number 10758 in exon IX which would result in a frame shift mutation and completely change amino acid sequence from Gly381 in the carboxyl-terminal region of protein C. The second abnormality, derived from the father, was a single nucleotide mutation from G to A in the codon (GAG to AAG) at nucleotide number 2977 in exon III, which would result in a substitution of Lys for γ-carboxyglutamic acid (Gla)26. This change would be responsible for the reduced immunological protein C levels of the patient and the father, estimated by a monoclonal antibody which recognizes the Gla-domain in a Ca2+-dependent manner (3.8% and 57%, respectively). Partially purified abnormal protein C from the father’s plasma showed a normal amidolytic activity and a change in the electrophoretic mobility. We detected the above mutations in his family members using two methods; one was a creation of new restriction enzyme sites using mutagenic primers and the other was single nucleotide primer extension. Both methods are rapid and useful for the diagnosis of prenatal protein C abnormalities.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 77-77
Author(s):  
Fan Zhang ◽  
Yi Chen ◽  
Yi Jin ◽  
Chun-Hui Xu ◽  
Dian-Jia Liu ◽  
...  

Abstract Stress-induced angiogenesis enormously contributes to both normal development and pathogenesis of various diseases including cancer. Among many stress response pathways implicated in regulation of angiogenesis, the amino acid response (AAR) and the unfolded protein response (UPR) pathways are closely interconnected, as they converge on the common target, eIF2α, which is a key regulator of protein translation. Two kinases, namely Gcn2 (Eif2ak4) and Perk (Eif2ak3), are responsible for transducing signals from AAR and UPR, respectively, to phosphorylation of eIF2α. Even though numerous studies have been performed, this close interconnection between AAR and UPR makes it difficult to clearly distinguish different contributions of these two pathways in regulation of angiogenesis. In this study, we generated a zebrafish angiogenic model harboring a loss-of-function mutation of the threonyl-tRNA synthetase (tars) gene. Tars belongs to a family of evolutionarily conserved enzymes, aminoacyl-tRNA synthetases (aaRSs), which control the first step of protein translation through coupling specific amino acids with their cognate tRNAs. Deficiencies of several aaRSs in zebrafish have been shown to cause increased branching of blood vessels, and this angiogenic phenotype has roughly been explained by activation of AAR and UPR; however, it is unclear whether both AAR and UPR are required and to what extent they contribute to this process. To address this issue, we first performed RNA-seq analyses of Tars-mutated and control zebrafish embryos, as well as those with knockdown of either Gcn2 or Perk in both genotypes. We found that the AAR target genes are dramatically activated in the Tars-mutants, whereas the genes associated with the three UPR sub-pathways (i.e., Perk-, Ire1- and Atf6-mediated pathways) remain inactive, except for very few genes (e.g., Atf3, Atf4, Asns and Igfbp1) that are shared in both AAR and UPR, thus suggesting activation of AAR, but not UPR, in the Tars-mutants. In support of this notion, knockdown of the AAR-associated kinase Gcn2 in the Tars-mutants largely represses the activated genes, while the Perk knockdown shows very little effect. Nonetheless, in contrast to the apparently dispensable role of Perk in Tars-mutants, knockdown of Perk in control embryos leads to specific gene expression alterations, suggesting that Perk effectively functions in homeostatic states (i.e., controls), but, in the stress condition (i.e., Tars-mutants), its function is largely overwhelmed by activation of the Gcn2-mediated AAR. To validate these observations, we investigated the angiogenic phenotypes of the zebrafish models upon genetic and pharmacological interference with the AAR and UPR pathways. A transgenic zebrafish line, Tg(flk1:EGFP), was crossed with the Tars-mutants to visualize angiogenesis in vivo. We observed increased branching of blood vessels in the Tars-mutants, which is rescued by tars mRNA but not an enzymatically dead version. Importantly, knockdown of Gcn2 in the Tars-mutants rescues this phenotype. In contrast, knockdown of Perk, or knockdown of two other known eIF2α kinases, Hri (Eif2ak1) or Pkr (Eif2ak2), shows no effect. Furthermore, knockdown of either one of two major factors downstream to eIF2α, namely Atf4 and Vegfα, or inhibition of Vegf receptor with the drug SU5416, also rescue the phenotype. Thus, these results confirm that AAR, but not UPR, is required for the Tars-deficiency-induced angiogenesis. Taken together, this study demonstrates that, despite being closely interconnected and even sharing a common downstream target, the Gcn2-mediated AAR and the Perk-mediated UPR can be activated independently in different conditions and differentially regulate cellular functions such as angiogenesis. This notion reflects the specificity and efficiency of multiple stress response pathways that are evolved integrally to benefit the organism by ensuring sensing and responding precisely to different types of stresses. This study also provides an example of combining systematic gene expression profiling and phenotypic validations to distinguish activities of such interconnected pathways. Further clarification of the mechanisms shall advance our understanding of how the organisms respond to diverse stresses and how the abnormalities in these regulatory machineries cause cellular stress-related diseases such as cancer, diabetes and immune disorders. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Dorothy Wavinya Nyamai ◽  
Özlem Tastan Bishop

AbstractTreatment of parasitic diseases has been challenging due to the development of drug resistance by parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of plasmodium and the pathway is present in all the life cycle stages of the plasmodium parasite. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse the first reaction where an amino acid is added to the cognate tRNA. Currently, there is limited research on comparative studies of aminoacyl tRNA synthetases as potential drug targets. The aim of this study is to understand differences between plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. Plasmodium falciparum, P. fragile, P. vivax, P. ovale, P. knowlesi, P. bergei, P. malariae and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. Despite functional and structural conservation, multiple sequence analysis, motif discovery, pairwise sequence identity calculations and molecular phylogenetic analysis showed striking differences between parasite and human proteins. Prediction of alternate binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that were weakly conserved when compared to the human homologues. These differences provide a basis for further exploration of plasmodium aminoacyl tRNA synthetases as potential drug targets.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hoo Young Lee ◽  
Dae-Hyun Jang ◽  
Jae-Won Kim ◽  
Dong-Woo Lee ◽  
Ja-Hyun Jang ◽  
...  

Abstract Background Ataxia-telangiectasia is a rare autosomal recessive, neurodegenerative disorder caused by alterations in the ATM gene. The majority of ATM pathogenic variants are frameshift or nonsense variants which are predicted to truncate the whole ATM protein. Herein, we report on an ataxia telangiectasia child with atypical phenotype who was identified as compound heterozygous for two ATM variants involving a previously described pathogenic single nucleotide variation (SNV) and a novel copy number variation (CNV). Case presentation A 6-year-old boy presented with delayed development and oculomotor apraxia. Brain magnetic resonance imaging showed interval development of mild atrophy in the cerebellum. Serum alpha fetoprotein level was in normal range. Next-generation sequencing and single-nucleotide polymorphism array tests were performed. Next-generation sequencing revealed a heterozygous nonsense pathogenic variant in ATM, c.742C > T (p.Arg248Ter) inherited from the father. Single-nucleotide polymorphism array revealed a compound heterozygous CNV, arr[GRCh37] 11q22.3(10851766–108183226) × 1, 31460 bp (exons 24–40 deletion of ATM) inherited from the mother, which was validated by reverse transcription-polymerase chain reaction analysis (RT-PCR). We demonstrated that this variant (NM_000051.4:c.3403_6006del) generated a product of in-frame deletion of exon 24–40 of ATM (p.Ser1135_Gln2002del). Conclusions The compound heterozygosity for ATM variants involving a previously described pathogenic SNV and a novel CNV may be associated with the atypical clinical manifestations. This clinical report extends the genetic and phenotypic spectrum of ATM pathogenic variants in atypical ataxia-telangiectasia, thus making implementation of advanced analysis beyond the routine next-generation sequencing an important consideration in diagnosis and rehabilitation services for children with ataxia-telangiectasia.


1989 ◽  
Vol 9 (11) ◽  
pp. 4645-4652 ◽  
Author(s):  
C M Chow ◽  
U L Rajbhandary

We show that the nuclear genes for the cytoplasmic and mitochondrial leucyl-tRNA synthetase (LeuRS) of Neurospora crassa are distinct in their encoded proteins, codon usage, mRNA levels, and regulation. The 4.2-kilobase-pair region representing the structural gene for cytoplasmic LeuRS and flanking regions has been sequenced. The positions of the 5' and 3' ends of mRNA and of a single 62-base-pair intron have been mapped. The methionine-initiated open reading frame encoded a protein of 1,123 amino acids and displayed a strong codon bias. Although cytoplasmic LeuRS shares with mitochondrial LeuRS some general features common to most aminoacyl-tRNA synthetases, there is little amino acid sequence similarity between them, mRNA levels for cytoplasmic LeuRS were much higher than those for mitochondrial LeuRS. This observation and the strong codon bias in the cytoplasmic LeuRS gene may contribute to a greater abundance of cytoplasmic LeuRS than mitochondrial LeuRS. The genes for cytoplasmic and mitochondrial LeuRS are regulated independently. The cytoplasmic LeuRS gene is regulated by the cross-pathway control system in N. crassa, which is analogous to general amino acid control in Saccharomyces cerevisiae. The cytoplasmic LeuRS mRNA levels are induced by amino acid starvation resulting from the addition of aminotriazole. Part of this increase is due to utilization of new transcription start sites. In contrast, the mitochondrial LeuRS gene is not induced by amino acid limitation. However, the mitochondrial LeuRS mRNA levels did increase dramatically upon inhibition of mitochondrial protein synthesis by chloramphenicol or ethidium bromide or in the temperature-sensitive strain leu-5 carrying a mutation in the mitochondrial LeuRS structural gene.


Author(s):  
Rawah K H M Zeiad ◽  
Edwin C Ferren ◽  
Denise D Young ◽  
Shanelle J De Lancy ◽  
Demitrios Dedousis ◽  
...  

Abstract Aminoacyl-tRNA synthetases (ARSs) are crucial enzymes for protein translation. Mutations in genes encoding ARSs are associated with human disease. Tyrosyl-tRNA synthetase is encoded by YARS which is ubiquitously expressed and implicated in an autosomal dominant form of Charcot-Marie-Tooth and autosomal recessive YARS-related multisystem disease. We report on a former 34-week gestational age male who presented at 2 months of age with failure to thrive (FTT) and cholestatic hepatitis. He was subsequently diagnosed with hyperinsulinemic hypoglycemia with a negative congenital hyperinsulinism gene panel and F-DOPA positron-emission tomography (PET) scan that did not demonstrate a focal lesion. Autopsy findings were notable for overall normal pancreatic islet size and morphology. Trio whole exome sequencing identified a novel homozygous variant of uncertain significance in YARS (c.611A>C, p.Tyr204Cys) with each parent a carrier for the YARS variant. Euglycemia was maintained with diazoxide (max dose, 18 mg/kg/day), and enteral dextrose via gastrostomy tube (G-Tube). During his prolonged hospitalization, the patient developed progressive liver disease, exocrine pancreatic insufficiency, acute renal failure, recurrent infections, ichthyosis, hematologic concerns, hypotonia, and global developmental delay. Such multisystem features have been previously reported in association with pathogenic YARS mutations. Although hypoglycemia has been associated with pathogenic YARS mutations, this report provides more conclusive data that a YARS variant can cause hyperinsulinemic hypoglycemia. This case expands the allelic and clinical heterogeneity of YARS-related disease. In addition, YARS-related disease should be considered in the differential of hyperinsulinemic hypoglycemia associated with multisystem disease.


2021 ◽  
Vol 22 (8) ◽  
pp. 3808
Author(s):  
Steffen Reinbothe ◽  
Claudia Rossig ◽  
John Gray ◽  
Sachin Rustgi ◽  
Diter von Wettstein ◽  
...  

Aminoacyl-tRNA synthetases (AaRS) charge tRNAs with amino acids for protein translation. In plants, cytoplasmic, mitochondrial, and chloroplast AaRS exist that are all coded for by nuclear genes and must be imported from the cytosol. In addition, only a few of the mitochondrial tRNAs needed for translation are encoded in mitochondrial DNA. Despite considerable progress made over the last few years, still little is known how the bulk of cytosolic AaRS and respective tRNAs are transported into mitochondria. Here, we report the identification of a protein complex that ties AaRS and tRNA import into the mitochondria of Arabidopsis thaliana. Using leucyl-tRNA synthetase 2 (LeuRS2) as a model for a mitochondrial signal peptide (MSP)-less precursor, a ≈30 kDa protein was identified that interacts with LeuRS2 during import. The protein identified is identical with a previously characterized mitochondrial protein designated HP30-2 (encoded by At3g49560) that contains a sterile alpha motif (SAM) similar to that found in RNA binding proteins. HP30-2 is part of a larger protein complex that contains with TIM22, TIM8, TIM9 and TIM10 four previously identified components of the translocase for MSP-less precursors. Lack of HP30-2 perturbed mitochondrial biogenesis and function and caused seedling lethality during greening, suggesting an essential role of HP30-2 in planta.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 665-665
Author(s):  
Satoshi Okada ◽  
Nobutsune Ishikawa ◽  
Kenichiro Shirao ◽  
Miyuki Tsumura ◽  
Takashi Satoh ◽  
...  

Abstract Severe congenital neutropenia (SCN) is characterized by early childhood onset of profound neutropenia and recurrent life-threatening infections. The bone marrow usually shows a reduced number of mature myeloid cells with an arrest at the promyelocyte-myelocyte stage. SCN includes a variety of hematological disorders caused by the different genetic abnormality. Genetic analysis in individuals with SCN indicates that 60% of cases are attributable to heterozygous mutation in ELA2, encoding neutrophil elastase. Recently, homozygous mutation in HAX1 encoding HAX1, mitochondrial protein associates with HS1 which is a substrate for Src family tyrosine kinase, was identified in individuals with autosomal recessive forms of SCN and the original Kostmann family in Sweden. In this study, we examined involvement of HAX1 and ELA2 in 17 Japanese cases with SCN. Ten patients had heterozygous mutations, including two novel mutations in ELA2. Five patients had homozygous or compound heterozygous mutations in HAX1. A homozygous single-base-pair substitution at nucleotide 256 (256C>T) HAX1 mutation causing a nonsense change R86X was detected in three patients. Two sibling cases showed compound heterozygous mutation of 256C>T and 59-bp deletion at nucleotide 376–434. This 59-bp deletion was a novel mutation leading to a frameshift and a premature stop codon at nucleotide 441–443 (R126fsX128). All heterozygous carriers had no detectable phenotype. HAX1 protein was undetectable in both homozygous and compound heterozygous patients by immunoblot analysis of leukocytes. Notably, all patients with HAX1 deficiency showed failure to thrive and mild to severe developmental delay. Further, three patients carrying homozygous R86X mutation had epilepsy. Two of three patients had complex partial seizures, and another had atypical absence. An Iranian patient carrying homozygous R86X mutation of HAX1 was described to show failure to thrive in the original report of HAX1 deficiency, and three of six cases of the original Kostmann family showed neurological deficits. In contrast, no SCN patients with a heterozygous mutation in ELA2 displayed the association of neurodevelopmental abnormalities. Thus, R86X mutation in HAX1 is a common abnormality in Japanese SCN patients with HAX1 deficiency and may lead to neurodevelopmental abnormalities as well as severe myelopoietic defects. Because HAX1 is a ubiquitously expressed gene, further accumulation of the patients should be needed to characterize the clinical features of HAX1 deficiency.


Sign in / Sign up

Export Citation Format

Share Document