scholarly journals 3D Printing of Hierarchically Porous Lattice Structures Based on Åkermanite Glass Microspheres and Reactive Silicone Binder

2022 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Arish Dasan ◽  
Jozef Kraxner ◽  
Luca Grigolato ◽  
Gianpaolo Savio ◽  
Hamada Elsayed ◽  
...  

The present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, flame synthesized glass microbeads with 10 wt% of silicone resins were utilized to fabricate green scaffolds, later converted into targeted bioceramic phase by firing at 1100 °C in air. No chemical reaction between the glass microspheres, crystallizing into åkermanite, and silica deriving from silicone oxidation was observed upon heat treatment. Silica acted as a binder between the adjacent microspheres, enhancing the creation of microporosity, as documented by XRD, and SEM coupled with EDX analysis. The formation of ‘spongy’ struts was confirmed by infiltration with Rhodamine B solution. The compressive strength of the sintered porous scaffolds was up to 0.7 MPa with the porosity of 68–84%.

Author(s):  
Shuai Ma ◽  
Qian Tang ◽  
Ying Liu ◽  
Qixiang Feng

Abstract Lattice structures (LS) manufactured by 3D printing are widely applied in many areas, such as aerospace and tissue engineering, due to their lightweight and adjustable mechanical properties. It is necessary to reduce costs by predicting the mechanical properties of LS at the design stage since 3D printing is exorbitant at present. However, predicting mechanical properties quickly and accurately poses a challenge. To address this problem, this study proposes a novel method that is applied to different LS and materials to predict their mechanical properties through machine learning. First, this study voxelized 3D models of the LS units and then calculated the entropy vector of each model as the geometric feature of the LS units. Next, the porosity, material density, elastic modulus, and unit length of the lattice unit are combined with entropy as the inputs of the machine learning model. The sample set includes 57 samples collected from previous studies. Support vector regression (SVR) was used in this study to predict the mechanical properties. The results indicate that the proposed method can predict the mechanical properties of LS effectively and is suitable for different LS and materials. The significance of this work is that it provides a method with great potential to promote the design process of lattice structures by predicting their mechanical properties quickly and effectively.


2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940025 ◽  
Author(s):  
Jeong-Hyo Hong ◽  
Tianyu Yu ◽  
Zixuan Chen ◽  
Soo-Jeong Park ◽  
Yun-Hae Kim

Poly-lactic Acid (PLA) is an environmentally friendly material with better stability in heat shrinkage than Acrylonitrile Butadiene Styrene (ABS), such as warping in 3D printing. This study focused on the enhancement of the mechanical properties of PLA filament for 3D printers through different heat treatment temperature and heat exposure time of PLA samples. The results showed that the highest flexural strength was recorded in the PLA sample that went through heat treatment at [Formula: see text] and heat exposure time of 300 s. And it tended to decrease with temperature and time after this point. But it has higher flexural strength than neat PLA. The compressive strength showed the highest compressive strength through heat treatment at [Formula: see text] for 600 s. Because compressive strength has no threshold limit temperature in experimental temperature, compressive strength showed a tendency to increase with increasing heat exposure time and high temperature at same condition. This result showed that the heat treatment process affects the flexural strength and compressive strength and can be improved upon using appropriate heat treatment conditions.


2021 ◽  
Author(s):  
Shuai Ma ◽  
Qian Tang ◽  
Ying Liu ◽  
Qixiang Feng

Abstract Lattice structures (LS) manufactured by 3D printing are widely applied in many areas, such as aerospace and tissue engineering, due to their lightweight and adjustable mechanical properties. It is necessary to reduce costs by predicting the mechanical properties of LS at the design stage since 3D printing is exorbitant at present. However, predicting mechanical properties quickly and accurately poses a challenge. To address this problem, this study proposes a novel method that is applied to different LS and materials to predict their mechanical properties through machine learning. First, this study voxelised 3D models of the LS units and then calculated the entropy vector of each model as the geometric feature of the LS units. Next, the porosity, material density, elastic modulus, and unit length of the lattice unit are combined with entropy as the inputs of the machine learning model. The sample set includes 57 samples collected from previous studies. Support vector regression was used in this study to predict the mechanical properties. The results indicate that the proposed method can predict the mechanical properties of LS effectively and is suitable for different LS and materials. The significance of this work is that it provides a method with great potential to promote the design process of lattice structures by predicting their mechanical properties quickly and effectively.


2014 ◽  
Vol 670-671 ◽  
pp. 936-941 ◽  
Author(s):  
Yi Ping Chen ◽  
Ming Der Yang

3D printing as additive manufacturing enables to give concept proposers and designers a great possibility of producing physical parts and concept models at acceptable cost during a short time. Such technology is quite distinct from traditional machining techniques adopting subtractive process. The purpose of this study is to briefly describe new micro-scale manufacture utilizing a series of process of 3D printing, including 3D modeling, 3D model slicing, printing, and products. Especially, 3D modeling is one of major components in 3D printing process and becomes a barrier to entry the business of micro-scale manufacture for everyone with a 3-D printer. This paper introduces two low-cost approaches to generate 3D models, including active and passive approaches. 3D scanning as an active approach allows the replication of real objects without the need of moulding techniques. On the other hand, image-based modeling as a passive is an alternative of un-touch model reconstruction without a threat of destructive impact to the modeled object. Also, a statue in gypsum was made by a 3D printer based on a digital 3D model generated through the low-cost active approach for demonstration.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 562
Author(s):  
Catalin Gheorghe Amza ◽  
Aurelian Zapciu ◽  
George Constantin ◽  
Florin Baciu ◽  
Mihai Ion Vasile

Parts made from thermoplastic polymers fabricated through 3D printing have reduced mechanical properties compared to those fabricated through injection molding. This paper analyzes a post-processing heat treatment aimed at enhancing mechanical properties of 3D printed parts, in order to reduce the difference mentioned above and thus increase their applicability in functional applications. Polyethylene Terephthalate Glycol (PETG) polymer is used to 3D print test parts with 100% infill. After printing, samples are packed in sodium chloride powder and then heat treated at a temperature of 220 °C for 5 to 15 min. During heat treatment, the powder acts as support, preventing deformation of the parts. Results of destructive testing experiments show a significant increase in tensile and compressive strength following heat treatment. Treated parts 3D printed in vertical orientation, usually the weakest, display 143% higher tensile strength compared to a control group, surpassing the tensile strength of untreated parts printed in horizontal orientation—usually the strongest. Furthermore, compressive strength increases by 50% following heat treatment compared to control group. SEM analysis reveals improved internal structure after heat treatment. These results show that the investigated heat treatment increases mechanical characteristics of 3D printed PETG parts, without the downside of severe part deformation, thus reducing the performance gap between 3D printing and injection molding when using common polymers.


Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract DEWARD is an oil-hardening, non-deforming, manganese die steel that is characterized by uniformity, good machinability and satisfactory performance in service. Its composition permits a relatively low hardening temperature to give minimum distortion after heat treatment and little danger of cracking. It has good wear resistance and gives excellent results when used for all kinds of intricate tools. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-310. Producer or source: AL Tech Specialty Steel Corporation.


Author(s):  
Sabrin A. Samad ◽  
Abul Arafat ◽  
Rebecca Ferrari ◽  
Rachel L. Gomes ◽  
Edward Lester ◽  
...  

2021 ◽  
pp. 002199832110046
Author(s):  
Wei Feng ◽  
Chengwei Tang ◽  
Lei Liu ◽  
Jian Chen ◽  
Yang Zhang ◽  
...  

ZrB2 particles were preset to the C-AlSi interface to improve oxidation resistance of C/C preform and adjust the microstructure of the interpenetrated C/C-AlSi composite prepared through pressure infiltration of eutectic AlSi into a fiber fabric based porous C/C skeleton. Micro-morphology investigations suggested that the AlSi textures were changed from dendritic to petals-like state, and the nano to micro-scale ZrB2 particles were dispersed into AlSi and affected the distribution of Al and Si nearby carbon. Tests demonstrated that C/C-AlSi have slight lower density and thermal expansion coefficient, and higher original compressive strength, while C/C-ZrB2-AlSi composites presented an outstanding strength retention rate after thermal shock. Fracture and micro-morphology indicated that the influence of the preset ZrB2 to the interface of carbon and alloy greatly affected the generation and propagation of cracks, which determined the diverse compression behaviors of the composites before and after thermal shock.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jungang Li ◽  
Chaoqian Zhao ◽  
Chun Liu ◽  
Zhenyu Wang ◽  
Zeming Ling ◽  
...  

Abstract Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair.


Procedia CIRP ◽  
2021 ◽  
Vol 99 ◽  
pp. 110-115
Author(s):  
Jan Werner ◽  
Mohamed Aburaia ◽  
Alexander Raschendorfer ◽  
Maximilian Lackner

Sign in / Sign up

Export Citation Format

Share Document