scholarly journals A Cost-Effective System for Aerial 3D Thermography of Buildings

2020 ◽  
Vol 6 (8) ◽  
pp. 76
Author(s):  
Claudia Daffara ◽  
Riccardo Muradore ◽  
Nicola Piccinelli ◽  
Nicola Gaburro ◽  
Tullio de Rubeis ◽  
...  

Three-dimensional (3D) imaging and infrared (IR) thermography are powerful tools in many areas in engineering and sciences. Their joint use is of great interest in the buildings sector, allowing inspection and non-destructive testing of elements as well as an evaluation of the energy efficiency. When dealing with large and complex structures, as buildings (particularly historical) generally are, 3D thermography inspection is enhanced by Unmanned Aerial Vehicles (UAV—also known as drones). The aim of this paper is to propose a simple and cost-effective system for aerial 3D thermography of buildings. Special attention is thus payed to instrument and reconstruction software choice. After a very brief introduction to IR thermography for buildings and 3D thermography, the system is described. Some experimental results are given to validate the proposal.

Author(s):  
Sebastian Brand ◽  
Michael Kögel ◽  
Frank Altmann ◽  
Ingrid DeWolf ◽  
Ahmad Khaled ◽  
...  

Abstract Through Silicon Via (TSV) is the most promising technology for vertical interconnection in novel three-dimensional chip architectures. Reliability and quality assessment necessary for process development and manufacturing require appropriate non-destructive testing techniques to detect cracks and delamination defects with sufficient penetration and imaging capabilities. The current paper presents the application of two acoustically based methods operating in the GHz-frequency band for the assessment of the integrity of TSV structures.


2013 ◽  
Vol 663 ◽  
pp. 616-620
Author(s):  
Yu Gong ◽  
Yue Gang Hu ◽  
Guo Rong Song ◽  
Cun Fu He ◽  
Bin Wu

An imaging system of ultrasonic detection is presented for non-destructive testing (NDT) of complex structures by using virtual instrument technology. The control devices for C-scan as well as for imaging system are designed and manufactured. In the coarse scan mode with the scan step of 1 mm, the system can quickly give an image display of a cross section of 80 mm (L) ×60 mm (D) by one measurement. In the refined scan model, the system can show a refine image of the coin. All experiments on coin, bulk metal, and other forms of specimen verify the efficiency of the proposed method. The experimental results are accurate and reliable.


2015 ◽  
Vol 77 (17) ◽  
Author(s):  
Noor Amizan Abd. Rahman ◽  
Ruzairi Abdul Rahim ◽  
Nor Muzakkir Nor Ayob ◽  
Jaysuman Pusppanathan ◽  
Fazlul Rahman Mohd Yunus ◽  
...  

Welding work is a connection process between the structure and the materials. This process is used in the construction, maintenance and repair especially mechanical engineering. This study discusses the type of welding used in the industry, mainly involving the pipeline welds. On-demand need to every work process when finishing weld requires quality tests to ensure compliance to the standards required. Monitoring through the display image has long been used in Non-Destructive Testing (NDT). Various methods of monitoring used in NDT focused on Ultrasonic Tomography (UT) as a method used in NDT and as an option for the future. Previous imaging result was in two-dimensional (2D) and then upgraded to a three-dimensional image (3D). Besides, there is potential of 3D imaging beyond the existing limits in terms of size, material thickness, especially for welding steel pipes. Achievement through research of existing pipe size so far outside diameter of 200 mm and a thickness of 5.8 mm should be limited in view of the obstacles to enhanced image resolution is less effective when compared to other tomography methods.


2011 ◽  
Vol 488-489 ◽  
pp. 682-685 ◽  
Author(s):  
Lovre Krstulović-Opara ◽  
Endri Garafulić ◽  
Branko Klarin ◽  
Željko Domazet

The article presents application of non destructive testing method based on the pulse heating infrared thermography used to detect material anomalies for the case of glass reinforced polymer structures. The goal of presented research, based on the thermal gradient approach, is to establish the procedure capable of filtering out anomalies from other thermal influences caused by thermal reflections of surrounding objects, geometry influences and heat flows for observed object.


2006 ◽  
Vol 321-323 ◽  
pp. 835-840 ◽  
Author(s):  
Won Tae Kim ◽  
Man Yong Choi ◽  
Jung Hak Park

This study is aimed to analyze the thermal imaging patterns presented by infrared(IR) thermography at which the metal with internal defects are thermally heated. Through the knowledge of non-destructive testing which infrared thermography can be applied to detect the defects inside the materials, there are two materials experimented; one is stainless steel and the other is cast-iron. Thermally, each material of specimens is heated at the base of the material and kept with constant temperature, The artificial defects in the specimen are formulated. Under the shape and location of the defects, temperature profiles are also measured and validated using the computer simulation. It is concluded that the characteristics of thermal patterns obtained from IR thermography are consistent with those of measurement and computations.


2016 ◽  
Vol 16 (4) ◽  
pp. 3583-3586 ◽  
Author(s):  
Jigang Wang ◽  
Shengcai Hao ◽  
Wenhua Zhou ◽  
Xiaokun Qi ◽  
Jilong Shi

Optical Non-Destructive Testing (ONDT) can be applied as penetrating elemental and structure analysis technology in the pigments identification field. Three-dimensional video microscopy, Raman microscopy and energy dispersive X-ray fluorescence spectroscopy are employed to measure the materials based on a Qing Dynasty meticulous painting. The results revealed that the dark yellow area within the decorative patterns was presented due to the interaction of Emerald green and hematite, and the bright yellow edge area was delineated by Cu–Zn–Pb composition. The interesting thing is that an artificial synthetic ultramarine blue was checked in the painting. According to the first synthesized time of ultramarine blue and Paris green, the time limit of the painting completion can be identified. The principle of Pigment subtractive colorant and nitikaset method were employed to interpreting the results. Optical testing combined with the area of cultural relic identification can be a potential method to build an expert identification system successfully. This work also help lay the optical method groundwork for further cultural relic identification, sterilization, and preservation.


Sign in / Sign up

Export Citation Format

Share Document