scholarly journals Experimental and Numerical Investigation of Self-Burial Mechanism of Pipeline with Spoiler under Steady Flow Conditions

2019 ◽  
Vol 7 (12) ◽  
pp. 456 ◽  
Author(s):  
Woo-Dong Lee ◽  
Hyo-Jae Jo ◽  
Han-Sol Kim ◽  
Min-Jun Kang ◽  
Kwang-Hyo Jung ◽  
...  

Herein, hydraulic model experiments and numerical simulations were performed to understand the self-burial mechanism of subsea pipelines with spoilers under steady flow conditions. First, scour characteristics and self-burial functions according to the spoiler length-to-pipe diameter ratio (S/D) were investigated through hydraulic experiments. Further, the Navier–Stokes solver was verified. The experimental values of the velocity at the bottom of the pipeline with a spoiler and the pressure on the sand foundation where the pipeline rested were represented with the degree of conformity. Scour characteristics of a sand foundation were investigated from the numerical analysis results of the velocity and vorticity surrounding the pipelines with spoilers. The compilation of results from the hydraulic experiment and numerical analysis showed that the projected area increased when a spoiler was attached to the subsea pipes. This consequently increased the velocity of fluid leaving the top and bottom of the pipe, and high vorticity was formed within and above the sand foundation. This aggravated scouring at the pipe base and increased the top and bottom asymmetry of the dynamic pressure field, which developed a downward force on the pipeline. These two primary effects acting simultaneously under steady flow conditions explained the self-burial of pipelines with a spoiler attachment.

Author(s):  
M. B. Graf ◽  
E. M. Greitzer ◽  
F. E. Marble ◽  
O. P. Sharma

Effects of stator pressure field on upstream rotor performance in a high pressure compressor stage have been assessed using three-dimensional steady and time-accurate Reynolds-averaged Navier-Stokes computations. Emphasis was placed on: (1) determining the dominant features of the flow arising from interaction of the rotor with the stator pressure field, and (2) quantifying the overall effects on time averaged loss, blockage, and pressure rise. The time averaged results showed a 20 to 40% increase in overall rotor loss and a 10 to 50% decrease in tip clearance loss compared to an isolated rotor. The differences were dependent on the operating point and increased as the stage pressure rise, and amplitude of the unsteady back pressure variations, was increased. Motions of the tip leakage vortex on the order of the blade pitch were observed at the rotor exit in all the unsteady flow simulations; these were associated with enhanced mixing in the region. The period of the motion scaled with rotor flow-through time rather than stator passing. Three steady flow approximations for the rotor-stator interaction were assessed with reference to the unsteady computations: an axisymmetric representation of the stator pressure field, an inter-blade row averaging plane method, and a technique incorporating deterministic stresses and bodyforces associated with stator flow field. Differences between steady and unsteady predictions of overall rotor loss, tip region loss, and endwall blockage ranged from 5 to 50% of the time average, but the steady flow models gave overall rotor pressure rise and flow capacity within 5% of the time averaged values.


2011 ◽  
Vol 175 ◽  
pp. 192-195
Author(s):  
Duo Sheng Li ◽  
Xian Liang Zhou ◽  
Dun Wen Zuo ◽  
Xiao Zhen Hua

Maths model based on wo-dimensionalhas was built to simulate the velocity and pressure field of the growth of diamond film. Firtstly,the plasma jet flow is supposed as steady state incompressible gas, which meets with Reynolds-averaged Navier–Stokes equations. The model of the growth of convex diamond film considers different convex height of Mo substrate. The velocity and pressure field were simulated by CFD respectively.The simulational results show that, the distributions of velocity and pressure fields were fluctuant in reaction chamber. When convex height of Mo substrate was 9mm, DC plasma jet was smoother than the other heights, thus, we predicts that diamond film easily grows. Meanwhile, we prepared four diamond films in different heights of substrate, by DCPJCVD. Raman spectra were used to investigate the quality of convex diamond film. It was found that, when the height of convex substrate was 9mm, convex diamond film had only diamond characteristic peak. It is obvious that numerical analysis help us predict the distributions of velocity and pressure fields and synthesize high quality convex diamond film.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Filippo Avanzi ◽  
Francesco De Vanna ◽  
Yin Ruan ◽  
Ernesto Benini

This study discusses a general framework to identify the unsteady features of a flow past an oscillating aerofoil in deep dynamic stall conditions. In particular, the work aims at demonstrating the advantages for the design process of the Spectral Proper Orthogonal Decomposition in accurately producing reliable reduced models of CFD systems and comparing this technique with standard snapshot-based models. Reynolds-Averaged Navier-Stokes system of equations, coupled with k−ω SST turbulence model, is used to produce the dataset, the latter consisting of a two-dimensional NACA 0012 aerofoil in the pitching motion. Modal analysis is performed on both velocity and pressure fields showing that, for vectored values, a proper tuning of the filtering process allows for better results compared to snapshot formulations and extract highly correlated coherent flow structures otherwise undetected. Wider filters, in particular, produce enhanced coherence without affecting the typical frequency response of the coupled modes. Conversely, the pressure field decomposition is drastically affected by the windowing properties. In conclusion, the low-order spectral reconstruction of the pressure field allows for an excellent prediction of aerodynamic loads. Moreover, the analysis shows that snapshot-based models better perform on the CFD values during the pitching cycle, while spectral-based methods better fit the loads’ fluctuations.


Author(s):  
Ahmed Abdelwahab

Vaned diffusers have been used successfully as efficient and compact dynamic pressure recovery devices in industrial centrifugal compressor stages. Typically such diffusers consist of a cascade of two-dimensional blades distributed circumferentially at close proximity to the impeller exit. In this paper three low-solidity diffuser blade geometries are numerically investigated. The first geometry employs variable stagger stacking of similar blade sections along the blade span. The second employs linearly inclined stacking to generate blade lean along the diffuser span. The third geometry employs the conventional two-dimensional low-solidity diffuser geometry with no variable stagger or lean. The variable stagger blade arrangement has the potential of better aligning the diffuser leading edges with the highly non-uniform flow leaving the impeller. Both variable stagger and linearly leaned diffuser blade arrangements, however, have the effect of redistributing the blade loading and flow streamlines in the spanwise direction leading to improved efficiency and pressure recovery capacity of the diffuser. In this paper a description of the proposed diffuser geometries is presented. The results of Three-dimensional Navier-Stokes numerical simulations of the three centrifugal compressor arrangements are discussed. Comparisons between the performance of the two and three-dimensional diffuser blade geometries are presented. The comparisons indeed show that the variable stagger and leaned diffusers present an improvement in the diffuser operating range and pressure recovery capacity over the conventional two-dimensional diffuser geometry.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2000 ◽  
Author(s):  
Paul F. Fischer ◽  
Seung Lee ◽  
Francis Loth ◽  
Hisham S. Bassiouny ◽  
Nurullah Arslan

Abstract This was a study to compare computational and experimental results of flow field inside the venous anastomosis of an arteriovenous (AV) graft. Laser Doppler anemometry (LDA) measurements were conducted inside an upscaled end-to-side graft model under steady flow conditions at Reynolds number 1820 which is representative of the in vivo flow conditions inside a human AV graft. The distribution of the velocity and turbulence intensity was measured at several locations in the plane of the bifurcation. This flow field was simulated using computation fluid dynamics (CFD) and shown to be in good agreement. Under steady flow conditions, the flow field demonstrated an unsteady character (transition to turbulence).


2018 ◽  
Author(s):  
Ming-ming Liu ◽  
Ming Zhao ◽  
Lin Lu

Water waves play an important role in local scour around subsea pipelines laid on the sandy seabed, especially in shallow water regions. In this paper, a two-dimensional numerical model is employed to predict local scour around submarine pipelines under water waves in shoaling condition. The motion of water under waves is simulated by solving the Reynolds Averaged Navier-Stokes (RANS) equations. The evolution of the seabed surface near the pipeline is predicted by solving the conservation of the sediment mass, which transport in the water in the forms of bed load and suspended load. The main aim of this study is to investigate the effect of the seabed slope on the scour profiles and scour depth. To achieve this aim, numerical simulations of scour around a pipeline on a flat seabed and on a slope seabed with a slope angle of 15° are conducted for various wave conditions.


2020 ◽  
Vol 10 (18) ◽  
pp. 6226
Author(s):  
Zhanfeng Qi ◽  
Lishuang Jia ◽  
Yufeng Qin ◽  
Jian Shi ◽  
Jingsheng Zhai

A numerical investigation of the propulsion performance and hydrodynamic characters of the full-active flapping foil under time-varying freestream is conducted. The finite volume method is used to calculate the unsteady Reynolds averaged Navier–Stokes by commercial Computational Fluid Dynamics (CFD) software Fluent. A mesh of two-dimensional (2D) NACA0012 foil with the Reynolds number Re = 42,000 is used in all simulations. We first investigate the propulsion performance of the flapping foil in the parameter space of reduced frequency and pitching amplitude at a uniform flow velocity. We define the time-varying freestream as a superposition of steady flow and sinusoidal pulsating flow. Then, we study the influence of time-varying flow velocity on the propulsion performance of flapping foil and note that the influence of the time-varying flow is time dependent. For one period, we find that the oscillating amplitude and the oscillating frequency coefficient of the time-varying flow have a significant influence on the propulsion performance of the flapping foil. The influence of the time-varying flow is related to the motion parameters (reduced frequency and pitching amplitude) of the flapping foil. The larger the motion parameters, the more significant the impact of propulsion performance of the flapping foil. For multiple periods, we note that the time-varying freestream has little effect on the propulsion performance of the full-active flapping foil at different pitching amplitudes and reduced frequency. In summary, we conclude that the time-varying incoming flow has little effect on the flapping propulsion performance for multiple periods. We can simplify the time-varying flow to a steady flow field to a certain extent for numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document