Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves?
Exposure to nanoparticles (NPs) has been identified as a major concern for marine ecosystems. Because of their peculiar physico-chemical features, NPs are accumulated in marine organisms, which suffer a variety of adverse effects. In particular, bivalve mollusks represent a unique target for NPs, mainly because they are suspension-feeders with highly developed processes for cellular internalization of nano- and micrometric particles. Several studies have demonstrated that the uptake and the accumulation of NPs can induce sub-lethal effects towards marine bivalves. However, to understand the real risk of NP exposures the application of the so-called “omics” techniques (e.g., proteomics, genomics, metabolomics, lipidomics) has been suggested. In particular, proteomics has been used to study the effects of NPs and their mechanism(s) of action in marine bivalves, but to date its application is still limited. The present review aims at summarizing the state of the art concerning the application of proteomics as a tool to investigate the effects of nanoparticles on the proteome of marine bivalves, and to critically discuss the advantages and limitations of proteomics in this field of research. Relying on results obtained by studies that applied proteomics on bivalve tissues, proteomics application needs to be considered cautiously as a promising and valuable tool to shed light on toxicity and mechanism(s) of action of NPs. Although on one hand, the analysis of the current literature demonstrated undeniable strengths, potentiality and reliability of proteomics, on the other hand a number of limitations suggest that some gaps of knowledge need to be bridged, and methodological and technical improvements are necessary before proteomics can be readily and routinely applied to nanotoxicology studies.