scholarly journals Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully

Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

Gullies are sources and reservoirs of sediments and perform as efficient transfers of runoff and sediments. In recent years, several techniques and technologies emerged to facilitate monitoring of gully dynamics at unprecedented spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The specific objectives of this work were: (1) to analyze the effectiveness of the restoration activities, (2) to study erosion and deposition dynamics before and after the restoration activities using high-resolution digital elevation models (DEMs), (3) to examine the role of micro-morphology on the observed topographic changes, and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal, high-resolution DEMs produced using structure-from-motion (SfM) photogrammetry and aerial images acquired by a fixed-wing unmanned aerial vehicle (UAV). The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Livestock exclosure promoted the stabilization of bank headcuts. The implemented restoration measures increased notably sediment deposition.

2021 ◽  
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

<p>Soil erosion by water is a frequent soil degradation process in rangelands of SW Spain. The two main erosive processes in these areas are sheetwash erosion in hillslopes and gully erosion due to concentrated flow in valley bottoms. Land use changes and overgrazing play a key role in the genesis and development of gullies and gully erosion is a frequent process with negative consequences at the valley bottoms of these landscapes.</p><p>The development of new techniques allows monitoring of gully dynamics with an increase at spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in February 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The objectives of this study were: (1) to analyze the effectiveness of the restoration measures, (2) to study erosion and deposition dynamics before and after the restoration activities, (3) to examine the role of micro-morphology on the observed topographic changes and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal high-resolution DEMs produced using Structure-from-Motion (SfM) photogrammetry and aerial images acquired by a fixed-wing Unmanned Aerial Vehicle (UAV). DEMs and orthophotographs with a Ground Sampling Distance of 0.02 m were produced by means of SfM photogrammetric techniques. The average Root Mean Square Error (RMSE) estimated during the SfM processing was 0.03 m.</p><p>The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Nevertheless, erosion was observed immediately downstream in 9% of the check dams. Livestock exclosure in the most degraded area promoted the stabilization of bank headcuts and revegetation. The sediments retained behind check dams reduced the longitudinal slope gradient of the channel bed and established a positive feedback mechanism for channel revegetation.</p><p><strong>Keywords</strong>: gully erosion, restoration, topographic change, UAV+SfM, rangeland.</p>


2021 ◽  
Author(s):  
Mirela Beloiu ◽  
Dimitris Poursanidis ◽  
Samuel Hoffmann ◽  
Nektarios Chrysoulakis ◽  
Carl Beierkuhnlein

<p>Recent advances in deep learning techniques for object detection and the availability of high-resolution images facilitate the analysis of both temporal and spatial vegetation patterns in remote areas. High-resolution satellite imagery has been used successfully to detect trees in small areas with homogeneous rather than heterogeneous forests, in which single tree species have a strong contrast compared to their neighbors and landscape. However, no research to date has detected trees at the treeline in the remote and complex heterogeneous landscape of Greece using deep learning methods. We integrated high-resolution aerial images, climate data, and topographical characteristics to study the treeline dynamic over 70 years in the Samaria National Park on the Mediterranean island of Crete, Greece. We combined mapping techniques with deep learning approaches to detect and analyze spatio-temporal dynamics in treeline position and tree density. We use visual image interpretation to detect single trees on high-resolution aerial imagery from 1945, 2008, and 2015. Using the RGB aerial images from 2008 and 2015 we test a Convolution Neural Networks (CNN)-object detection approach (SSD) and a CNN-based segmentation technique (U-Net). Based on the mapping and deep learning approach, we have not detected a shift in treeline elevation over the last 70 years, despite warming, although tree density has increased. However, we show that CNN approach accurately detects and maps tree position and density at the treeline. We also reveal that the treeline elevation on Crete varies with topography. Treeline elevation decreases from the southern to the northern study sites. We explain these differences between study sites by the long-term interaction between topographical characteristics and meteorological factors. The study highlights the feasibility of using deep learning and high-resolution imagery as a promising technique for monitoring forests in remote areas.</p>


2021 ◽  
Vol 80 (10) ◽  
Author(s):  
Christian Conoscenti ◽  
Chiara Martinello ◽  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 828
Author(s):  
Antonella Marsico ◽  
Vincenzo De Santis ◽  
Domenico Capolongo

Biancana badlands are peculiar landforms in the Basilicata region of Italy resulting from the local combination of geological, geomorphological, and climatic settings. The evolution of badlands mainly depends on slope erosion, which is controlled by the angle, exposure, and vegetation of the slope and its interactions with insolation, rain, and wind. Multi-temporal, detailed, high-resolution surveys have led researchers to assess changes in slopes to investigate the spatial distributions of erosion and deposition and the influence of wind-driven rain (WDR). A comparison between two terrestrial laser scanner (TLS) point clouds surveyed during 2006 and 2016 fieldwork showed that the study area suffers from intense erosion that is not spatially uniform on all sides of biancane. By combining slope and exposure data and the cloud of difference (CoD), derived from a 3D model, we showed that all the steepest southern sides of biancane suffered the most intense erosion. Because splash and sheet erosion triggers sediment displacement, the analysis was also focused on the intensity and direction of WDR. We performed a real field experiment analysing erosion rates over 10 years in relation to daily and hourly wind data (direction and speed), and we found that frequent winds of moderate force, combined with moderate to heavy rainfall, contributed to the observed increase in soil erosion when combined with the insolation effect. Our results show how all the considered factors interact in a complex pattern to control the spatial distribution of erosion.


2021 ◽  
Vol 15 (8) ◽  
pp. 3699-3717
Author(s):  
Joschka Geissler ◽  
Christoph Mayer ◽  
Juilson Jubanski ◽  
Ulrich Münzer ◽  
Florian Siegert

Abstract. We use high-resolution aerial photogrammetry to investigate glacier retreat in great spatial and temporal detail in the Ötztal Alps, a heavily glacierized area in Austria. Long-term in situ glaciological observations are available for this region as well as a multitemporal time series of digital aerial images with a spatial resolution of 0.2 m acquired over a period of 9 years. Digital surface models (DSMs) are generated for the years 2009, 2015, and 2018. Using these, glacier retreat, extent, and surface elevation changes of all 23 glaciers in the region, including the Vernagtferner, are analyzed. Due to different acquisition dates of the large-scale photogrammetric surveys and the glaciological data, a correction is successfully applied using a designated unmanned aerial vehicle (UAV) survey across a major part of the Vernagtferner. The correction allows a comparison of the mass balances from geodetic and glaciological techniques – both quantitatively and spatially. The results show a clear increase in glacier mass loss for all glaciers in the region, including the Vernagtferner, over the last decade. Local deviations and processes, such as the influence of debris cover, crevasses, and ice dynamics on the mass balance of the Vernagtferner, are quantified. Since those local processes are not captured with the glaciological method, they underline the benefits of complementary geodetic surveying. The availability of high-resolution multi-temporal digital aerial imagery for most of the glaciers in the Alps provides opportunities for a more comprehensive and detailed analysis of climate-change-induced glacier retreat and mass loss.


Author(s):  
I. V. Florinsky ◽  
T. N. Skrypitsyna ◽  
D. P. Bliakharskii ◽  
O. T. Ishalina ◽  
A. S. Kiseleva

Abstract. Glaciated areas are important targets for interdisciplinary research. In the last quarter of the 20th century, there has been a significant shift in glacier observation approaches from direct fieldwork to remote sensing. Over the past 15 years, unmanned aerial systems have been increasingly used for this purpose. In this article, we briefly describe a newly launched Russian–Chinese project aimed at developing a theory and methodology for digital modeling and analysis of the glacier microtopography using very high resolution data from unmanned aerial surveys. We argue the relevance of the study and review key publications on the application of digital terrain modeling and geomorphometry in glaciology. Next, we discuss the aim of the project and tasks performed by the Russian side, as well as materials and methods used in the study. As initial data, we use multi-temporal, digital aerial images of very high resolution (5 cm) collected by the unmanned aerial survey of the ice sheet and glaciers near the Larsemann Hills, East Antarctic. Finally, we present some examples for geomorphometric analysis of glacier microtopography including snow/ice features of eolian origin.


2015 ◽  
Vol 12 (10) ◽  
pp. 7449-7490
Author(s):  
P. R. Lindgren ◽  
G. Grosse ◽  
K. M. Walter Anthony ◽  
F. J. Meyer

Abstract. Thermokarst lakes are important emitters of methane, a potent greenhouse gas. However, accurate estimation of methane flux from thermokarst lakes is difficult due to their remoteness and observational challenges associated with the heterogeneous nature of ebullition (bubbling). We used multi-temporal high-resolution (9–11 cm) aerial images of an interior Alaskan thermokarst lake, Goldstream Lake, acquired 2 and 4 days following freeze-up in 2011 and 2012, respectively, to characterize methane ebullition seeps and to estimate whole-lake ebullition. Bubbles impeded by the lake ice sheet form distinct white patches as a function of bubbling rate vs. time as ice thickens. Our aerial imagery thus captured in a single snapshot the ebullition events that occurred before the image acquisition. Image analysis showed that low-flux A- and B-type seeps are associated with low brightness patches and are statistically distinct from high-flux C-type and Hotspot seeps associated with high brightness patches. Mean whole-lake ebullition based on optical image analysis in combination with bubble-trap flux measurements was estimated to be 174 ± 28 and 216 ± 33 mL gas m−2 d−1 for the years 2011 and 2012, respectively. A large number of seeps demonstrated spatio-temporal stability over our two-year study period. A strong inverse exponential relationship (R2 ≥ 0.79) was found between percent surface area of lake ice covered with bubble patches and distance from the active thermokarst lake margin. Our study shows that optical remote sensing is a powerful tool to map ebullition seeps on lake ice, to identify their relative strength of ebullition and to assess their spatio-temporal variability.


Sign in / Sign up

Export Citation Format

Share Document