elevation changes
Recently Published Documents


TOTAL DOCUMENTS

448
(FIVE YEARS 123)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 354
Author(s):  
Jan Kavan ◽  
Guy D. Tallentire ◽  
Mihail Demidionov ◽  
Justyna Dudek ◽  
Mateusz C. Strzelecki

Tidewater glaciers on the east coast of Svalbard were examined for surface elevation changes and retreat rate. An archival digital elevation model (DEM) from 1970 (generated from aerial images by the Norwegian Polar Institute) in combination with recent ArcticDEM were used to compare the surface elevation changes of eleven glaciers. This approach was complemented by a retreat rate estimation based on the analysis of Landsat and Sentinel-2 images. In total, four of the 11 tidewater glaciers became land-based due to the retreat of their termini. The remaining tidewater glaciers retreated at an average annual retreat rate of 48 m year−1, and with range between 10–150 m year−1. All the glaciers studied experienced thinning in their frontal zones with maximum surface elevation loss exceeding 100 m in the ablation areas of three glaciers. In contrast to the massive retreat and thinning of the frontal zones, a minor increase in ice thickness was recorded in some accumulation areas of the glaciers, exceeding 10 m on three glaciers. The change in glacier geometry suggests an important shift in glacier dynamics over the last 50 years, which very likely reflects the overall trend of increasing air temperatures. Such changes in glacier geometry are common at surging glaciers in their quiescent phase. Surging was detected on two glaciers studied, and was documented by the glacier front readvance and massive surface thinning in high elevated areas.


2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Norhafizi Mohamad ◽  
Anuar Ahmad ◽  
Mohd Faisal Abdul Khanan ◽  
Ami Hassan Md Din

Estimating surface elevation changes in mangrove forests requires a technique to filter the mangrove canopy and quantify the changes underneath. Hence, this study estimates surface elevation changes underneath the mangrove canopy through vegetation filtering and Difference of DEM (DoD) techniques using two epochs of unmanned aerial vehicle (UAV) data carried out during 2016 and 2017. A novel filtering algorithm named Surface estimation from Nearest Elevation and Repetitive Lowering (SNERL) is used to estimate the elevation height underneath the mangrove canopy. Consequently, DoD technique is used to quantify the elevation change rates at the ground surface, which comprise erosion, accretion, and sedimentation. The significant findings showed that region of interest (ROI) 5 experienced the highest volumetric accretion (surface raising) at 0.566 cm3. The most increased erosion (surface lowering) was identified at ROI 8 at −2.469 cm3. In contrast, for vertical change average rates, ROI 6 experienced the highest vertical accretion (surface raising) at 1.281 m. In comparison, the most increased vertical erosion (surface lowering) was spotted at ROI 3 at −0.568 m. The change detection map and the rates of surface elevation changes at Kilim River enabled authorities to understand the situation thoroughly and indicate the future situation, including its interaction with sea-level rise impacts.


2021 ◽  
Vol 51 (4) ◽  
pp. 345-371
Author(s):  
Giovanna BERRINO ◽  
Peter VAJDA ◽  
Pavol ZAHOREC ◽  
Antonio G. CAMACHO ◽  
Vincenzo DE NOVELLIS ◽  
...  

We analyse spatiotemporal gravity changes observed on the Ischia island (Italy) accompanying the destructive earthquake of 21 August 2017. The 29 May 2016 to 22 September 2017 time-lapse gravity changes observed at 18 benchmarks of the Ischia gravimetric network are first corrected for the gravitational effect of the surface deformation using the deformation-induced topographic effect (DITE) correction. The co-seismic DITE is computed by Newtonian volumetric integration using the Toposk software, a high-resolution LiDAR DEM and the co-seismic vertical displacement field derived from Sentinel-1 InSAR data. We compare numerically the DITE field with its commonly used Bouguer approximation over the island of Ischia with the outcome that the Bouguer approximation of DITE is adequate and accurate in this case. The residual gravity changes are then computed at gravity benchmarks by correcting the observed gravity changes for the planar Bouguer effect of the elevation changes at benchmarks over the same period. The residual gravity changes are then inverted using an inversion approach based on model exploration and growing source bodies, making use of the Growth-dg inversion tool. The found inversion model, given as subsurface time-lapse density changes, is then interpreted as mainly due to a co-seismic or post-seismic disturbance of the hydrothermal system of the island. Pros and weak points of such interpretation are discussed.


2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Norhafizi Mohamad ◽  
◽  
Anuar Ahmad ◽  
Ami Hassan Md Din ◽  
◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Qian Wang ◽  
Fei Yu ◽  
Ziqing Feng ◽  
Weihua Li ◽  
Naiyang Li ◽  
...  

Purpose: To evaluate corneal elevation changes in patients with allergic conjunctivitis (AC) and to analyze their correlations with ocular allergy signs and corneal biomechanical alterations.Methods: Thirty patients (30 eyes) with AC and twenty normal subjects (20 eyes) were included in this prospective study. All participants underwent a complete ocular examination, including corneal tomography by Pentacam and corneal biomechanics evaluation by Corvis ST. AC patients were evaluated for their eye rubbing frequency and ocular allergic signs.Results: The elevation at the thinnest location (TE) and the central location (CE), the elevation difference at the thinnest location (TED) and the central location (CED), and the mean value of elevation difference in the central 4 mm zoom (MED) of both the anterior and posterior corneal surface were significantly higher in the AC group than in the normal group (p < 0.05 for all). In AC patients, only anterior corneal elevation parameters were positively correlated with eye rubbing frequency and ocular allergy sign severity (p < 0.05 for all), while the tomography and biomechanical index (TBI) was positively correlated with the elevation parameters of both the anterior and posterior corneal surfaces (p < 0.05 for all).Conclusion: AC patients carry an increased risk of corneal ectasia. Posterior corneal elevation parameters are sensitive and reliable predictors of keratoconus (KC) risk in AC patients.Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT04299399, identifier [NCT04299399].


2021 ◽  
Vol 13 (22) ◽  
pp. 4539
Author(s):  
Xuanqi Wang ◽  
Feng Wang ◽  
Yuming Xiang ◽  
Hongjian You

Epipolar images can improve the efficiency and accuracy of dense matching by restricting the search range of correspondences from 2-D to 1-D, which play an important role in 3-D reconstruction. As most of the satellite images in archives are incidental collections, which do not have rigorous stereo properties, in this paper, we propose a general framework to generate epipolar images for both in-track and cross-track stereo images. We first investigate the theoretical epipolar constraints of single-sensor and multi-sensor images and then introduce the proposed framework in detail. Considering large elevation changes in mountain areas, the publicly available digital elevation model (DEM) is applied to reduce the initial offsets of two stereo images. The left image is projected into the image coordinate system of the right image using the rational polynomial coefficients (RPCs). By dividing the raw images into several blocks, the epipolar images of each block are parallel generated through a robust feature matching method and fundamental matrix estimation, in which way, the horizontal disparity can be drastically reduced while maintaining negligible vertical disparity for epipolar blocks. Then, stereo matching using the epipolar blocks can be easily implemented and the forward intersection method is used to generate the digital surface model (DSM). Experimental results on several in-track and cross-track images, including optical-optical, SAR-SAR, and SAR-optical pairs, demonstrate the effectiveness of the proposed framework, which not only has obvious advantages in mountain areas with large elevation changes but also can generate high-quality epipolar images for flat areas. The generated epipolar images of a ZiYuan-3 pair in Songshan are further utilized to produce a high-precision DSM.


2021 ◽  
Vol 13 (21) ◽  
pp. 4488
Author(s):  
Bianca R. Charbonneau ◽  
Stephanie M. Dohner

Aeolian transport affects beach and foredune pre-storm morphologies, which directly contribute to storm responses. However, significant spatiotemporal variation exists within beach-dune systems regarding how biotic and abiotic factors affect topography. There are multiple metrics for quantifying topographic change, with varying pros and cons, but understanding how a system changes across spatiotemporal scales relative to varying forcings is necessary to accurately model and more effectively manage these systems. Beach and foredune micro- and mesoscale elevation changes (Δz) were quantified remotely and in situ across a mid-Atlantic coastal system. The microscale field collections consisted of 27 repeat measurements of 73 elevation pins located in vegetated, transitional, and unvegetated foredune microhabitats over three years (2015 to 2018) during seasonal, event-based, and background wind-condition collections. Unoccupied aerial System (UAS) surveys were collected to link microscale point Δz to mesoscale topographic change. Microscale measurements highlight how Δz varies more pre- to post-event than seasonally or monthly, but regardless of collection type (i.e., seasonal, monthly, or event-based), there was lower Δz in the vegetated areas than in the associated unvegetated and partially vegetated microhabitats. Despite lower Δz values per pin measurement, over the study duration, vegetated pins had a net elevation increase of ≈20 cm, whereas transitional and unvegetated microhabitats had much lower change, near-zero net gain. These results support vegetated microhabitats being more stable and having better sediment retention than unvegetated and transitional areas. Comparatively, mesoscale UAS surfaces typically overestimated Δz, such that variation stemming from vegetation across microhabitats was obscured. However, these data highlight larger mesoscale habitat impacts that cannot be determined from point measurements regarding volumetric change and feature mapping. Changes in features, such as beach access paths, that are associated with increased dynamism are quantifiable using mesoscale remote sensing methods rather than microscale methods. Regardless of the metric, maintaining baseline data is critical for assessing what is captured and missed across spatiotemporal scales and is necessary for understanding the contributors to heterogeneous topographic change in sandy coastal foredunes.


Sign in / Sign up

Export Citation Format

Share Document