scholarly journals Cutting Performance Evaluation of the Coated Tools in High-Speed Milling of AISI 4340 Steel

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.

2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


2012 ◽  
Vol 723 ◽  
pp. 311-316
Author(s):  
Wei Wang ◽  
Ming Hai Wang ◽  
Xiao Peng Li

The experiments of high speed milling Ni-base superalloy GH625 by using two types of the coated cemented carbide tools at home and abroad, using the scanning electron microscopy (SEM) to observe the tools wear morphology, analyzing the worn surface elements distribution by energy spectrum analysis (EDS) and the main wear mechanisms of the tools. The results show that adhesion, oxidation and diffusion are the main wear mechanisms in initiative wearing stage of the domestic coated tools. And the main wear mechanisms of the imported coated tools are adhesion, oxidation, diffusion and coating spallation.


2014 ◽  
Vol 621 ◽  
pp. 75-81 ◽  
Author(s):  
You Xi Lin ◽  
Hua Lin ◽  
Zhen Wei Han

High speed cutting is an important means to improve the efficiency and the quality of machining mold steel, but the tool wear is one of the key factors restricting the increase of the cutting speed, leading to higher requirements for cutting tool materials. At present the researches of high-speed cutting of mold steel are mainly on the hardness mold steel, but less on P20 mold steel which hardness is 30-42HRC. This paper mainly studies the effect of cutting speed on wear property of TiAlN PVD coated tools when high-speed milling of P20 mold steels. The experiment was conducted using two different high cutting speeds under dry condition, 320m/min and 500m/min. Wear characterization of the rake and the flank surfaces as well as the collected chips were performed using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It was found that at high speeds, the dominant wear mechanisms were oxidation wear and diffusion wear, followed by adhesive wear and melt wear; as the cutting speed increased, the wear surface area of rake face will be closer to the main cutting edge.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2014 ◽  
Vol 629 ◽  
pp. 487-492 ◽  
Author(s):  
Mohd Shahir Kasim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
E. Mohamad ◽  
Raja Izamshah ◽  
...  

This study was carried out to investigate how the high-speed milling of Inconel 718 using ball nose end mill could enhance the productivity and quality of the finish parts. The experimental work was carried out through Response Surface Methodology via Box-Behnken design. The effect of prominent milling parameters, namely cutting speed, feed rate, depth of cut (DOC), and width of cut (WOC) were studied to evaluate their effects on tool life, surface roughness and cutting force. In this study, the cutting speed, feed rate, DOC, and WOC were in the range of 100 - 140 m/min, 0.1 - 0.2 mm/tooth, 0.5 - 1.0 mm and 0.2 - 1.8 mm, respectively. In order to reduce the effect of heat generated during the high speed milling operation, minimum quantity lubrication of 50 ml/hr was used. The effect of input factors on the responds was identified by mean of ANOVA. The response of tool life, surface roughness and cutting force together with calculated material removal rate were then simultaneously optimized and further described by perturbation graph. Interaction between WOC with other factors was found to be the most dominating factor of all responds. The optimum cutting parameter which obtained the longest tool life of 60 mins, minimum surface roughness of 0.262 μm and resultant force of 221 N was at cutting speed of 100 m/min, feed rate of 0.15 mm/tooth, DOC 0.5 m and WOC 0.66 mm.


2019 ◽  
Vol 33 (11) ◽  
pp. 5393-5398 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xu Zhang ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
...  

2011 ◽  
Vol 223 ◽  
pp. 456-463 ◽  
Author(s):  
Bei Zhi Li ◽  
Xiao Hui Jiang ◽  
Huai Jing Jing ◽  
Xiao Yan Zuo

With FEM software of AdvantEdge, a model was created to analyze cutting force and thermal in the high-speed milling process, this model included a complete milling process of cutter radius. Combined with experiments validation, in high-speed milling, the normal force is greater than the tangential force and result in greater residual stress of that direction, which indicates that mechanical force play an essential part on the formation of residual stress. When the speed is over certain scope, the cutting force decreases, but the cutting temperature has been rising. In Roughing, by limiting the range of high-speed the residual tensile stress impact can be reduced. While in finishing, as the feed rate reducing the residual tensile stress will decrease greatly, improving the surface quality of thin-walled parts.


2016 ◽  
Vol 693 ◽  
pp. 1129-1134
Author(s):  
Zhao Ju Zhu ◽  
Jie Sun ◽  
Lai Xiao Lu

A series of research on the interactions among tool wear, cutting force and cutting vibration were conducted through high speed milling experiment in this paper, which objected the titanium alloy as difficult-to-cut materials. The results showed that the increasing of tool wear led to enlarging the cutting force and cutting vibration; and vice versa, the increasing of cutting force and cutting vibration aggravated the tool wear in the process of machining. Besides, the variation trend of tool wear with cutting was similar to the trend of cutting force, while the variation trend between cutting vibration and tool wear was different. Especially in the sharply cutting tool wear stage, the influence of tool wear on cutting vibration became more complicated.


Sign in / Sign up

Export Citation Format

Share Document