scholarly journals Investigations on Surface Roughness and Tool Wear Characteristics in Micro-Turning of Ti-6Al-4V Alloy

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.

2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2013 ◽  
Vol 773-774 ◽  
pp. 339-347 ◽  
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

With increasing quantities of applications of Metal Matrix Composites (MMCs), the machinablity of these materials has become important for investigation. This paper presents an investigation of surface roughness and tool wear in dry machining of aluminium LM6-TiC composite using uncoated carbide tool. The experiments carried out consisted of different cutting models based on combination of cutting speed, feed rate and depth of cut as the parameters of cutting process. The cutting models designed based on the Design of Experiment Response Surface Methodology. The objective of this research is finding the optimum cutting parameters based on workpiece surface roughness and cutting tool wear. The results indicated that the optimum workpiece surface roughness was found at high cutting speed of 250 m min-1 with various feed rate within range of 0.05 to 0.2 mm rev-1, and depth of cut within range of 0.5 to 1.5 mm. Turning operation at high cutting speed of 250 m min-1 produced faster tool wear as compared to low cutting speed of 175 m min-1 and 100 m min-1. The wear minimum (VB = 42 μm ) was found at cutting speed of 100 m min-1, feet rate of 0.2 mm rev-1, and depth of cut of 1.0 mm until the length of cut reached 4050 mm. Based on the results of the workpiece surface roughness and the tool flank wear, recommended that turning of LM6 aluminium with 2 wt % TiC composite using uncoated carbide tool should be carried out at cutting speed higher than 175 m min-1 but at feed rate of less than 0.05 mm rev-1 and depth of cut less than 1.0 mm.


Author(s):  
Do Thi Kim Lien ◽  
Nguyen Dinh Man ◽  
Phung Tran Dinh

In this paper, an experimental study on the effect of cutting parameters on surface roughness was conducted when milling X12M steel. The cutting tool used in this study is a face milling cutter. The material that is used to make the insert is the hard alloy T15K6. The cutting parameters covered in this study include the cutting speed, the feed rate and depth of cut. The experiments are performed in the form of a rotating center composite design. The analysis shows that for both Ra and Rz: (1) the feed rate has the greatest influence on the surface roughness while the depth of cut, the cutting speed has a negligible effect on the surface roughness. (2) only the interaction between the feed rate and the depth of the cut has a significant effect on both Ra and Rz while the interaction between the cutting speed and the feed rate, the interaction between the cutting speed and the depth of cut have a negligible effect on surface roughness. A regression equation showing the relationship between Ra, Rz, and cutting parameters has also been built in this study.


2018 ◽  
Vol 3 (2) ◽  
pp. 82-86
Author(s):  
Bambang Siswanto ◽  
Sunyoto Sunyoto

There are several factors that affect the roughness of the workpiece surface when doing turning process on the lathe, especially the use of cutting parameters. This study aims to determine the effect of cutting speed and depth of cut parameters on the roughness of cylinder block hole surface. This research is an experimental research using two independent variables, which are cutting speed and depth of cut. The dependent variable is surface roughness of cylinder block’s hole. The research was done by making cast aluminum specimens and then turning a hole in the specimen with varied cutting speed and depth of cut. The surface roughness was then tested using Surfcorder SE 300. The obtained data were analyzed using descriptive analysis. Results show that there is an effect of cutting speed on the surface roughness of cylinder block, with the best result (smallest roughness value) was obtained from the use of cutting speed of 125 m / min. There is also an effect of depth of cut on the surface roughness of the cylinder block, with the best result given from the use of a 0.2 mm depth of cut.Ada beberapa faktor yang mempengaruhi tingkat kekasaran permukaan benda kerja pada proses pembubutan. Penelitian ini bertujuan untuk mengetahui pengaruh parameter kecepatan potong dan kedalaman potong terhadap kekasaran permukaan pada pembubutan lubang blok silinder mesin pemotong rumput. Penelitian ini merupakan penelitian eksperimen dengan variabel bebas kecepatan potong dan kedalaman potong, dan variabel terikat kekasaran permukaan lubang. Penelitian dilakukan dengan pembuatan spesimen dengan proses pengecoran aluminium kemudian spesimen dibubut lubang dengan diberi variasi kecepatan potong dan variasi kedalaman potong. Hasil pembubutan dilakukan uji kekasaran menggunakan Surfcorder SE 300. Data yang diperoleh kemudian dianalisis dengan analisis deskriptif. Hasil penelitian menunjukkan bahwa ada pengaruh kecepatan potong terhadap hasil kekasaran permukaan blok silinder mesin pemotong rumput, hasil  paling baik dengan nilai kekasaran paling kecil diperoleh dari kecepatan potong 125 m/menit. Ada pengaruh kedalaman potong terhadap hasil kekasaran permukaan blok silinder mesin pemotong rumput, hasil paling baik dengan nilai kekasaran paling kecil diperoleh dari kedalaman potong 0,2 mm.


Author(s):  
Ali Kemal Cakir

This study evaluates the surface roughness and current values using cutting parameters in the turning of AISI H11 being hot work tool steel under dry machining conditions. The selected design factors are the depth of cut, feed rate, cutting speed. A design of experiments was used to carry out this research. The obtained results were analyzed to determine the effects of input parameters on the resultant surface roughness, current using the analysis of variance (ANOVA) and the Response Surface Methodology (RSM). The experimental results showed that increasing feed rate increased the surface roughness, and current values. The most effective cutting parameter on all the output parameters was found to be the feed rate on the surface roughness. Also, the motor current values were influenced by the 38,48% depth of cut, 23,98% cutting speed, 25,52% feed rate, respectively.


2017 ◽  
Vol 753 ◽  
pp. 183-187 ◽  
Author(s):  
Muhammad M. Liman ◽  
Khaled Abou-El-Hossein ◽  
Abubakar I. Jumare ◽  
Peter Babatunde Odedeyi ◽  
Abdulqadir N. Lukman

Contact lens manufacture requires high accuracy and surface integrity. Surface roughness an important response because it has direct influence toward the part performance and the production cost. Hence, choosing optimal cutting parameters will not only improve the quality measure but also the productivity. This research work is therefore aimed at developing a predictive surface roughness model and investigate a finish cutting conditions of ONSI-56 contact lens polymer with a monocrystalline diamond cutting tool. In this work, a novel surface roughness prediction model, in which the feed rate, cutting speed and depth of cut are considered is developed. This combined process was successfully modeled using a Box–Behnken design (BBD) with response surface methodology (RSM). The effects of feed rate, cutting speed and depth of cut were investigated. Analysis of variance (ANOVA) showed that the proposed quadratic model effectively interpreted the experimental data with coefficients of determination of R2 = 0.89 and adjusted R2 = 0.84. The worse surface value was obtained at high feedrate and low spindle speed.


2018 ◽  
Vol 211 ◽  
pp. 03011
Author(s):  
Nitin Ambhore ◽  
Dinesh Kamble ◽  
Satish Chinchanikar

The changing behavior of vibration signals with varying cutting parameters (cutting speed, feed rate and depth of cut) for turning hardened AISI52100 steel has been studied and reported. The vibration response of cutting tool in all three mutually perpendicular directions, namely, in feed Vx, radial Vy and, tangential Vz directions have been captured by mounting piezoelectric tri-axial accelerometer close to the cutting tool. Experiments are planned and conducted as per Central composite rotatable design of Surface response methodology. The second order multiple regression models are developed to correlate cutting parameters with vibration acceleration and surface roughness. The coefficient of regression R2 for all models is found close to 0.92 which shows that the developed models are reliable and provide an excellent explanation between the cutting parameter and the vibration of cutting tool within limits. The analysis of the results revealed that cutting conditions are having prominent and mixed type effect on vibration signals. The acceleration amplitude Vx, Vy and Vz increases with increase in cutting speed, and depth of cut. The vibration amplitude Vx, Vy and Vz initially increases as feed increases and, with further increase in feed, the vibration amplitude decreases. The surface roughness is highly influenced by the feed rate followed by cutting speed whereas the depth of cut was found less significant. The fluctuation in frequency is observed in all directions. However, the band of frequency remains within a certain range. Within selected cutting parameter range, the maximum acceleration amplitude is observed in frequency band of 4 kHz - 16 kHz.


2014 ◽  
Vol 14 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Suha K. Shihab ◽  
Zahid A. Khan ◽  
Aas Mohammad ◽  
Arshad Noor Siddiquee

AbstractThe cutting parameters such as the cutting speed, the feed rate, the depth of cut, etc. are expected to affect the two constituents of surface integrity (SI), i.e., surface roughness and micro-hardness. An attempt has been made in this paper to investigate the effect of the CNC hard turning parameters on the surface roughness average (Ra) and the micro-hardness (μh) of AISI 52100 hard steel under dry cutting conditions. Nine experimental runs based on an orthogonal array of the Taguchi method were performed and grey relational analysis method was subsequently applied to determine an optimal cutting parameter setting. The feed rate was found to be the most influential factor for both the Ra and the μh. Further, the results of the analysis of variance (ANOVA) revealed that the cutting speed is the most significant controlled factor for affecting the SI in the turning operation according to the weighted sum grade of the surface roughness average and micro-hardness.


Sign in / Sign up

Export Citation Format

Share Document