scholarly journals Chitosan/Silver Nanoparticle/Graphene Oxide Nanocomposites with Multi-Drug Release, Antimicrobial, and Photothermal Conversion Functions

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2351
Author(s):  
Zheng Su ◽  
Daye Sun ◽  
Li Zhang ◽  
Miaomiao He ◽  
Yulin Jiang ◽  
...  

In this work, we designed and fabricated a multifunctional nanocomposite system that consists of chitosan, raspberry-like silver nanoparticles, and graphene oxide. The room temperature atmospheric pressure microplasma (RT-APM) process provides a rapid, facile, and environmentally-friendly method for introducing silver nanoparticles into the composite system. Our composite can achieve a pH controlled single and/or dual drug release. Under pH 7.4 for methyl blue loaded on chitosan, the drug release profile features a burst release during the first 10 h, followed by a more stabilized release of 70–80% after 40–50 h. For fluorescein sodium loaded on graphene oxide, the drug release only reached 45% towards the end of 240 h. When the composite acted as a dual drug release system, the interaction of fluorescein sodium and methyl blue slowed down the methyl blue release rate. Under pH 4, both single and dual drug systems showed a much higher release rate. In addition, our composite system demonstrated strong antibacterial abilities against E. coli and S. aureus, as well as an excellent photothermal conversion effect under irradiation of near infrared lasers. The photothermal conversion efficiency can be controlled by the laser power. These unique functionalities of our nanocomposite point to its potential application in multiple areas, such as multimodal therapeutics in healthcare, water treatment, and anti-microbials, among others.

Author(s):  
Zheng Su ◽  
Daye Sun ◽  
Li Zhang ◽  
Miaomiao He ◽  
Yulin Jiang ◽  
...  

In this work, we designed and fabricated a multifunctional nanocomposite system which consists of chitosan, raspberry-like silver nanoparticles and graphene oxide. Room temperature atmospheric pressure microplasma (RT-APM) process provides a rapid, facile, and environment-friendly method for introducing silver nanoparticles into the composite system. By loading different drugs onto the polymer matrix and/or graphene oxide, our composite can achieve a pH controlled dual drug release with release profile specific to the drugs used. In addition to its strong antibacterial ability against E. coli and S. aureus, our composite also demonstrates excellent photothermal conversion effect under irradiation of near infrared lasers. These unique functionalities point to it’s the potential of nanocomposite system in multiple applications areas such as multimodal therapeutics in healthcare, water treatment, and anti-microbial, etc.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Jihang Yao ◽  
Yilong Wang ◽  
Wendi Ma ◽  
Wenying Dong ◽  
Mei Zhang ◽  
...  

Developing scaffold materials with excellent biocompatibility, mechanical properties, and controlled drug release properties is vital to tissue engineering. In this study, we fabricated silk fibroin (SF)/poly(lactide-co-glycolide) (PLGA) nanofiber scaffolds containing recombinant human bone morphogenetic protein 2 (rhBMP2) and dexamethasone (DXM) via coaxial electrospinning, which were used in in vitro bone formation with rat bone marrow mesenchymal stem cells (rBMSCs). An in vitro drug release study was adopted to evaluate the sustained release potential of the core-shell structured nanofibers. Furthermore, we detected the potential of the SF/PLGA nanofiber membrane in vitro. In vitro studies showed that rhBMP2 still remained active on the nanofiber membrane. In addition, the dual-drug-loaded nanofiber membrane showed an early burst release of DXM and late sustained release of rhBMP2. rhBMP2 and DXM exhibited strong osteogenic differentiation potential when they acted on rBMSCs. Therefore, the SF/PLGA nanofiber membrane loaded with rhBMP2 and DXM has great potential for the enhancement of bone regeneration.


2020 ◽  
Author(s):  
Sheyda Shakiba ◽  
Carlos E. Astete ◽  
Rafael Cueto ◽  
Debora F. Rodrigues ◽  
Cristina M. Sabliov ◽  
...  

Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to characterize release profiles of fluorescent drugs from polymeric NPs, specifically poly lactic-co-glycolic acid NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to traditional release measurements requiring separation of entrapped and dissolved drugs (typically by dialysis) prior to quantification, AF4-FLD provides in situ purification of the NPs from unincorporated drugs, along with direct measurement of the entrapped drug. Size distributions and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering detectors. The AF4-FLD and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 88%) of unincorporated (burst release) drug at three different temperatures spanning the glass transition temperature (30 °C for PLGA-Enro NPs). The AF4-FLD analysis was able to identify size-dependent release rates across the entire continuous NP size distribution, with smaller NPs showing faster release. The AF4-FLD method also clearly captured the expected temperature dependence of the drug release (from almost no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish these differences in the extent or rate of release of the entrapped drug because of interferences from the burst release background, as well as the dialysis lag time. A mechanistic diffusion model that integrates data from both AF4-FLD and dialysis further supported the advantages of AF4-FLD to capture the true release rate of entrapped drug and avoid artifacts observed in dialysis. Overall, this study demonstrates the novel application and unique advantages of AF4-FLD methods to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.


2019 ◽  
Vol 20 (18) ◽  
pp. 4395 ◽  
Author(s):  
Yang ◽  
Zhang ◽  
Zhang

In this paper, nanofibrous membranes based on chitosan (CS), poly (vinyl alcohol) (PVA) and graphene oxide (GO) composites, loaded with antibiotic drugs, such as Ciprofloxacin (Cip) and Ciprofloxacin hydrochloride (CipHcl) were prepared via the electrospinning technique. The uniform and defect-free CS/PVA nanofibers were obtained and GO nanosheets, shaping spindle and spherical, were partially embedded into nanofibers. Besides, the antibiotic drugs were effectively loaded into the nanofibers and part of which were absorbed into GO nanosheets. Intriguingly, the release of the drug absorbed in GO nanosheets regulated the drug release profile trend, avoiding the “burst” release of drug at the release initial stage, and the addition of GO slightly improved the drug release ratio. Nanofibrous membranes showed the significantly enhanced antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis after the addition of antibiotic drug. Moreover, the drug-loaded nanofibrous membranes exhibited excellent cytocompatibility with Melanoma cells, indicative to the great potential potential for applications in wound dressing.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Desta Tesfay ◽  
Solomon Abrha ◽  
Zewdu Yilma ◽  
Gebremariam Woldu ◽  
Fantahun Molla

Ensete ventricosum (Welw.) cheeseman which belongs to the family of Musaceae is one of the main sources of starch in Ethiopia. This study aimed at evaluating epichlorohydrin cross-linked enset starch as a drug release sustaining excipient in microsphere formulations of theophylline. Extracted enset starch was cross-linked using epichlorohydrin as a cross-linking agent. The effect of cross-linker concentration, cross-linking duration, and cross-linking temperature on the degree of cross-linking and release rate of microspheres prepared by emulsion solvent evaporation method was investigated using the two-level full factorial design. Accordingly, the concentration of epichlorohydrin and duration of cross-linking were the most significant factors affecting both the degree of cross-linking and drug release rate. Thus, the effects of these two factors were further studied and optimized using the central composite design. As per the numerical method of central composite design, the optimal points were obtained at epichlorohydrin concentration of 13.70% and cross-linking time of 3.82 h. Under these optimal conditions, the model predicts the degree of cross-linking of 74.70% and drug release rate of 28.00 h1/2. The validity of these optimal points was confirmed experimentally. The microspheres of the optimum formulation also exhibited minimum burst release with sustained release for 12 h. Besides, the optimized formulation followed the Higuchi square root kinetic model with non-Fickian diffusion release mechanism. The finding of this study suggested that cross-linked enset starch can be used as an alternative drug-release-sustaining pharmaceutical excipient in microsphere formulation.


2013 ◽  
Vol 16 (3) ◽  
pp. 470 ◽  
Author(s):  
Sheri-Lee Harilall ◽  
Yahya E Choonara ◽  
Girish Modi ◽  
Lomas K Tomar ◽  
Charu Tyagi ◽  
...  

Purpose. Nanomedicine explores and allows for the development of drug delivery devices with superior drug uptake, controlled release and fewer drug side-effects. This study explored the use of nanosystems to formulate an implantable drug delivery device capable of sustained zidovudine release over a prolonged period. Methods. Pectin and alginate nanoparticles were prepared by applying a salting out and controlled gelification approach, respectively. The nanoparticles were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS) and were further evaluated for zidovudine (AZT) entrapment efficiency. Multipolymeric scaffolds were prepared by crosslinking carboxymethyl cellulose, polyethylene oxide and epsilon caprolactone for entrapment of zidovudine-loaded alginate nanoparticles to impart enhanced controlled release of zidovudine over the time period. Swelling and textural analysis were conducted on the scaffolds. Prepared scaffolds were treated with hydrochloric acid (HCl) to reduce the swelling of matrix in the hydrated environment thereby further controlling the drug release. Drug release studies in phosphate buffered saline (pH 7.4, 37°C) were undertaken on both zidovudine-loaded nanoparticles and native scaffolds containing alginate nanoparticles. Results. A higher AZT entrapment efficiency was observed in alginate nanoparticles. Biphasic release was observed with both nanoparticle formulations, exhibiting an initial burst release of drug within hours of exposure to PBS, followed by a constant release rate of AZT over the remaining 30 days of nanoparticle analysis. Exposure of the scaffolds to HCl served to reduce the drug release rate from the entrapped alginate nanoparticles and extended the AZT release up to 30 days. Conclusions. The crosslinked multipolymeric scaffold loaded with alginate nanoparticles and treated with 1% HCl showed the potential for prolonged delivery of zidovudine over a period of 30 days and therefore may be a potential candidate for use as an implantable device in treating Aids Dementia Complex. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2020 ◽  
Author(s):  
Sheyda Shakiba ◽  
Carlos E. Astete ◽  
Rafael Cueto ◽  
Debora F. Rodrigues ◽  
Cristina M. Sabliov ◽  
...  

Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to characterize release profiles of fluorescent drugs from polymeric NPs, specifically poly lactic-co-glycolic acid NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to traditional release measurements requiring separation of entrapped and dissolved drugs (typically by dialysis) prior to quantification, AF4-FLD provides in situ purification of the NPs from unincorporated drugs, along with direct measurement of the entrapped drug. Size distributions and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering detectors. The AF4-FLD and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 88%) of unincorporated (burst release) drug at three different temperatures spanning the glass transition temperature (30 °C for PLGA-Enro NPs). The AF4-FLD analysis was able to identify size-dependent release rates across the entire continuous NP size distribution, with smaller NPs showing faster release. The AF4-FLD method also clearly captured the expected temperature dependence of the drug release (from almost no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish these differences in the extent or rate of release of the entrapped drug because of interferences from the burst release background, as well as the dialysis lag time. A mechanistic diffusion model that integrates data from both AF4-FLD and dialysis further supported the advantages of AF4-FLD to capture the true release rate of entrapped drug and avoid artifacts observed in dialysis. Overall, this study demonstrates the novel application and unique advantages of AF4-FLD methods to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.


Author(s):  
Singh K. ◽  
Pandit K. ◽  
Mishra N.

The matrix tablets of cinnarizine and nimodipine were prepared with varying ratio of Carbopol- 971P and co-excipients of varying hydrophilicity (i.e. dicalcium phosphate and spray dried lactose) by direct compression and wet granulation using alcoholic mucilage. The prepared tablets were evaluated for weight variation, hardness and friability. The influence of concentration of the matrix forming material and co-excipients on the release rate of the drug was studied. The release rate of Cinnarizine (more soluble drug) from tablets followed diffusion controlled mechanism whereas for nimodipine (less soluble drug), the drug release followed case-II or super case- II transport mechanism based on Korsmeyer- Peppas equation. The results indicated that the drug release from matrix tablets was increases with increase in hydrophilicity of drug and co-excipients. The release of drug also increased with thermal treatment and decreasing polymer concentration.


2018 ◽  
Vol 68 (12) ◽  
pp. 2925-2918
Author(s):  
Gabriela Cioca ◽  
Maricel Agop ◽  
Marcel Popa ◽  
Simona Bungau ◽  
Irina Butuc

One of the main challenges in designing a release system is the possibility to control the release rate in order to maintain it at a constant value below a defined limit, to avoid exceeding the toxicity threshold. We propose a method of overcoming this difficulty by introducing the drug into liposomes, prior to its inclusion in the hydrogel. Furthermore, a natural cross linker (as is tannic acid) is used, instead of the toxic cross linkers commonly used, thus reducing the toxicity of the release system as a whole.


2019 ◽  
Vol 16 (10) ◽  
pp. 931-939
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Yannis Dotsikas

Background: The loop diuretic drug furosemide is widely used for the treatment of edema in various conditions, such as pulmonary, cardiac and hepatic edema, as well as cardiac infarction. Furosemide, due to its poor water solubility and low bioavailability after oral administration of conventional dosage form, is categorized as class IV in the biopharmaceutical classification system. Objective: In the case of furosemide, this release profile is responsible for various physiological problems, acute diuresis being the most serious. This adverse effect can be circumvented by the modified release of furosemide from tablet formulations compared to those forms designed for immediate release. Method: In this report, a D-optimal combined experimental design was applied for the development of furosemide containing bilayer and compression coated tablets, aiming at lowering the drug’s burst release in the acidic environment of the stomach. A D-optimal combined design was selected in order to include all requirements in one design with many levels for the factors examined. The following responses were selected as the ones reflecting better criteria for the desired drug release: dissolution at 120 min (30-40%), 300 min (60-70%) and 480 min >95%. The new formulations, suggested by the Doptimal combined design, incorporated different grades of Eudragit ® polymers (Eudragit® E100 and Eudragit® L100-55), lactose monohydrate and HPMC K15M. The dissolution profile of furosemide from these systems was probed via in vitro dissolution experiments in buffer solutions simulating the pH of the gastrointestinal tract. Results: The results indicate that the use of Eudragit® E100 in conjunction with lactose monohydrate led to 21.32-40.85 % drug release, in the gastric medium, in both compression-coated and bilayer tablets. This is lower than the release of the mainstream drug Lasix® (t=120 min, 44.5% drug release), implying longer gastric retention and drug waste minimization. Conclusion: Furosemide’s release in the intestinal environment, from compression coated tablets incorporating Eudragit® L100-55 and HPMC K15M in the inner core or one of the two layers of the bilayer tablets, was delayed, compared to Lasix®


Sign in / Sign up

Export Citation Format

Share Document