scholarly journals Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2680
Author(s):  
Ping Fan ◽  
Can Xue ◽  
Xiantai Zhou ◽  
Zujin Yang ◽  
Hongbing Ji

As stiff polymers are difficult to self-heal, the balance between polymers’ self-healing ability and mechanical properties is always a big challenge. Herein, we have developed a novel healable stiff polymer based on the Si-OR and Si-OSi dynamic covalent bonds. The self-healing mechanism was tested and proved by the small molecule model experiments and the contrast experiments of polymers. This polymer possesses excellent tensile, bending properties as well as room temperature self-healing abilities. Moreover, due to the sticky and shapeable properties under wetting conditions, the polymer could be used as an adhesive. Besides, even after four cycles of recycling, the polymer maintains its original properties, which meets the requirements of recyclable materials. It was demonstrated that the polymer exhibits potential application in some fields, such as recyclable materials and healable adhesives.

2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


2021 ◽  
Author(s):  
Zhanyu Jia ◽  
Guangyao Li ◽  
Juan Wang ◽  
shouhua Su ◽  
Jie Wen ◽  
...  

Conductivity, self-healing and moderate mechanical properties are necessary for multifunctional hydrogels which have great potential in health-monitor sensor application. However, the combination of electrical conductivity, self-healing and good mechanical properties...


2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 773 ◽  
Author(s):  
Yuqing Qian ◽  
Xiaowei An ◽  
Xiaofei Huang ◽  
Xiangqiang Pan ◽  
Jian Zhu ◽  
...  

Dynamic structures containing polymers can behave as thermosets at room temperature while maintaining good mechanical properties, showing good reprocessability, repairability, and recyclability. In this work, alkyl diselenide is effectively used as a dynamic cross-linker for the design of self-healing poly(urea–urethane) elastomers, which show quantitative healing efficiency at room temperature, without the need for any catalysts or external interventions. Due to the combined action of the urea bond and amide bond, the material has better mechanical properties. We also compared the self-healing effect of alkyl diselenide-based polyurethanes and alkyl disulfide-based polyurethanes. The alkyl diselenide has been incorporated into polyurethane networks using a para-substituted amine diphenyl alkyl diselenide. The resulting materials not only exhibit faster self-healing properties than the corresponding disulfide-based materials, but also show the ability to be processed at temperatures as low as 60 °C.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 275 ◽  
Author(s):  
Corinna Dannert ◽  
Bjørn Torger Stokke ◽  
Rita S. Dias

Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those achievable through molecular design of the network component. Here, we review different procedures that have been used to integrate nanoparticles into hydrogels; the types of interactions acting between polymers and nanoparticles; and how these underpin the improved mechanical and optical properties of the gels, including the self-healing ability of these composite gels, as well as serving as the basis for future development. In a less explored approach, hydrogels have been used as dispersants of nanomaterials, allowing a larger exposure of the surface of the nanomaterial and thus a better performance in catalytic and sensor applications. Furthermore, the reporting capacity of integrated nanoparticles in hydrogels to assess hydrogel properties, such as equilibrium swelling and elasticity, is highlighted.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022066
Author(s):  
Pengying Niu ◽  
Beibei Liu ◽  
Huanjun Li

Abstract With the development of flexible wearable electronic devices, researches on self-healing conductive materials have become prevalent. However, the self-healing performance of most conductive self-healing materials is commonly achieved by the external stimulus that may cause damage to the equipment. Pparticularly, these self-healing materials may lose the self-healing properties when exposed to a high-humidity environment. Here, we adopted two hydrophobic monomers (2-methoxyethyl acrylate and ethyl methacrylate) to obtain a self-healing elastomer that could display self-healing properties in air or under water though van der Waals forces. The quality and mechanical properties of the elastomer material could keep stable after stored under water for half a month. This elastomer material was capable of self-healing in different environments with self-repair efficiencies more than 50% in deionized water, strong acid solution and strong alkaline solution. The self-repair efficiencies were up to 77% at room temperature(T=25°C) and 64% at low temperature (T=-20°C) in air.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 305
Author(s):  
Linda Ritzen ◽  
Vincenzo Montano ◽  
Santiago J. Garcia

The use of self-healing (SH) polymers to make 3D-printed polymeric parts offers the potential to increase the quality of 3D-printed parts and to increase their durability and damage tolerance due to their (on-demand) dynamic nature. Nevertheless, 3D-printing of such dynamic polymers is not a straightforward process due to their polymer architecture and rheological complexity and the limited quantities produced at lab-scale. This limits the exploration of the full potential of self-healing polymers. In this paper, we present the complete process for fused deposition modelling of a room temperature self-healing polyurethane. Starting from the synthesis and polymer slab manufacturing, we processed the polymer into a continuous filament and 3D printed parts. For the characterization of the 3D printed parts, we used a compression cut test, which proved useful when limited amount of material is available. The test was able to quasi-quantitatively assess both bulk and 3D printed samples and their self-healing behavior. The mechanical and healing behavior of the 3D printed self-healing polyurethane was highly similar to that of the bulk SH polymer. This indicates that the self-healing property of the polymer was retained even after multiple processing steps and printing. Compared to a commercial 3D-printing thermoplastic polyurethane, the self-healing polymer displayed a smaller mechanical dependency on the printing conditions with the added value of healing cuts at room temperature.


2021 ◽  
Author(s):  
Yuechuan Wang ◽  
Yao Xiao ◽  
Xiaowei Fu ◽  
Liang Jiang ◽  
Anqian Yuan ◽  
...  

Despite great progress has been made in realizing the intrinsic self-healing of thermosetting polymers based on dynamic bonds crosslinking, the thermosetting polymers cross-linked by permanent covalent bonds are difficult to...


Sign in / Sign up

Export Citation Format

Share Document