scholarly journals Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7040
Author(s):  
Catalin Palade ◽  
Ana-Maria Lepadatu ◽  
Adrian Slav ◽  
Valentin Serban Teodorescu ◽  
Toma Stoica ◽  
...  

Group IV nanocrystals (NCs), in particular from the Si–Ge system, are of high interest for Si photonics applications. Ge-rich SiGe NCs embedded in nanocrystallized HfO2 were obtained by magnetron sputtering deposition followed by rapid thermal annealing at 600 °C for nanostructuring. The complex characterization of morphology and crystalline structure by X-ray diffraction, μ-Raman spectroscopy, and cross-section transmission electron microscopy evidenced the formation of Ge-rich SiGe NCs (3–7 nm diameter) in a matrix of nanocrystallized HfO2. For avoiding the fast diffusion of Ge, the layer containing SiGe NCs was cladded by very thin top and bottom pure HfO2 layers. Nanocrystallized HfO2 with tetragonal/orthorhombic structure was revealed beside the monoclinic phase in both buffer HfO2 and SiGe NCs–HfO2 layers. In the top part, the film is mainly crystallized in the monoclinic phase. High efficiency of the photocurrent was obtained in a broad spectral range of curves of 600–2000 nm at low temperatures. The high-quality SiGe NC/HfO2 matrix interface together with the strain induced in SiGe NCs by nanocrystallization of both HfO2 matrix and SiGe nanoparticles explain the unexpectedly extended photoelectric sensitivity in short-wave infrared up to about 2000 nm that is more than the sensitivity limit for Ge, in spite of the increase of bandgap by well-known quantum confinement effect in SiGe NCs.

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 802
Author(s):  
Chang Sun ◽  
Yingxin Mu ◽  
Yuxin Wang

Electrochemical ammonia synthesis, which is an alternative approach to the Haber–Bosch process, has attracted the attention of researchers because of its advantages including mild working conditions, environmental protection, and simple process. However, the biggest problem in this field is the lack of high-performance catalysts. Here, we report high-efficiency electroreduction of N2 to NH3 on γ-MnO2-supported Pd nanoparticles (Pd/γ-MnO2) under ambient conditions, which exhibits excellent catalytic activity with an NH3 yield rate of 19.72 μg·mg−1Pd h−1 and a Faradaic efficiency of 8.4% at −0.05 V vs. the reversible hydrogen electrode (RHE). X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization shows that Pd nanoparticles are homogeneously dispersed on the γ-MnO2. Pd/γ-MnO2 outperforms other catalysts including Pd/C and γ-MnO2 because of its synergistic catalytic effect between Pd and Mn.


2017 ◽  
Vol 751 ◽  
pp. 807-812
Author(s):  
Tuangphorn Prasitthikun ◽  
X. Wu ◽  
Tsugio Sato ◽  
Charusporn Mongkolkachit ◽  
Pornapa Sujaridworakun

High efficiency BiOBr/GO composites photocatalyst were successfully synthesized via a facile precipitation method. The precursors were prepared by dissolving Bi (NO3)3.5H2O and KBr in glycerol and distilled water, respectively. Various amounts (0.1-2 wt%) of graphene oxide were added into the mixed solution precursors, and stirred at room temperature to get precipitated powder without further heat treatment. The obtained products were characterized for phase, morphology, optical properties and surface area by X-ray diffraction (XRD), transmission electron microscopy (TEM), filed-emission scanning electron microscopy (FE-SEM), UV-Vis diffuse reflection spectroscopy (DRS) and Brunauer–Emmett–Teller (BET), respectively. The morphology and structure of as-synthesized samples were composed of numerous fine plates of BiOBr dispersed on the GO sheets. The photocatalytic activities of BiOBr/GO composites were evaluated by rhodamine B degradation under visible light irradiation. As the results, the significant increase in photodegradation of BiOBr/GO composite comparing with pure BiOBr was observed. Among all samples, the composite with 1 wt% of graphene oxide showed the highest photocatalytic performance.


2012 ◽  
Vol 24 (17) ◽  
pp. 1536-1538 ◽  
Author(s):  
Nannicha Hattasan ◽  
Bart Kuyken ◽  
Francois Leo ◽  
Eva M. P. Ryckeboer ◽  
Diedrik Vermeulen ◽  
...  

2014 ◽  
Vol 807 ◽  
pp. 115-121 ◽  
Author(s):  
Fatihah Aplop ◽  
Mohd Rafie bin Johan

Zinc doped Cadmium Selenide Quantum Dots (CdSe/Zn QDs) were synthesized via inverse micelle technique. The absorption spectra exhibit a strong blue-shift characteristic due to quantum confinement effect. The X-ray Diffraction (XRD) pattern showed the zinc-blende phase of Zn doped CdSe QDs. Transmission Electron Microscopy (TEM) images suggested that the sizes of QDs were falls in range between 2 – 8 nm, with narrow size distribution. The TEM images also revealed that the Zn doped CdSe QDs were spherical, having a compact and dense structure. The optical bandgap of Zn-doped CdSe QDs are smaller than the undoped CdSe QDs as shown in Tauc’s plot. The fourier transform infrared spectra proves the complexion of CdSe-Zn QDs.


2008 ◽  
Vol 1087 ◽  
Author(s):  
Satchidananda Rath ◽  
Shinji Nozaki ◽  
Hiroshi Ono ◽  
Kazuo Uchida ◽  
Satoshi Khojima

AbstractTin-dioxide (SnO2) ultra-small nanorods (UNR) have been successfully synthesized using the novel micellar technique. From transmission electron microscopy, the average diameter and length of the UNRs are estimated to be 1.3 nm and 5.0 nm, respectively. The crystal structure of the SnO2 UNRs was found to be tetragonal from the glazing incidence x-ray diffraction. The optical band gap estimated from the absorption spectrum is blue-shifted by 1 eV from that of bulk (3.64 eV). The photoluminescence spectrum shows two groups of peaks each with several fine peaks, one in the wavelength range of 270 – 370 nm and the other in the range of 380 – 500 nm which are due to the strong quantum confinement effect.


2001 ◽  
Vol 16 (11) ◽  
pp. 3133-3138 ◽  
Author(s):  
Jun Liu ◽  
X. Zhang ◽  
Yingjiu Zhang ◽  
Rongrui He ◽  
Jing Zhu

A relatively low-cost, high-efficiency method is reported to synthesize AlN nanowires, using carbon nanotubes as templates. The AlN nanowires were fabricated at 1100 °C, for 60 min. The diameters of the product could be roughly controlled by the sizes of carbon nanotubes selected as starting materials. The AlN nanowires obtained were among the thinnest ever known. X-ray diffraction, selected-area diffraction, energy dispersive spectroscopy, and high-resolution transmission electron microscopy, etc. were employed to characterize the products, which were found to be single crystals with some defects. The axes of the nanowires are normal to {1010} crystal planes. A new synthesis mechanism is proposed.


2021 ◽  
Vol 33 (12) ◽  
pp. 2972-2976
Author(s):  
Anju Bala ◽  
Rajeev Sehrawat ◽  
Renu Bala ◽  
Ashutosh Dixit

Organically functionalized manganese doped zinc sulfide (ZnS/Mn) quantum dots were prepared by simple chemical method with polypyrrole (PPy) used as a capping agent. Prepared quantum dots were characterized with Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction microscope (XRD), UV-visible spectroscopy and photoluminescence spectroscopy. Crystalline size of PPy capped ZnS/Mn quantum dots for various concentrations of PPy were approximate 2 nm as analyzed by XRD and TEM analysis. The absorption spectra revealed the occurrence of a blue shift in the peak of absorption and an increase in the band gap value due to the quantum confinement effect. FTIR spectroscopy confirmed that shifting of broad peak at 2335.8 cm–1 was due to S-H stretching vibrations, which confirmed interaction of hydrogen and sulphur in ZnS/Mn/PPy nanocomposites. Uncapped ZnS/Mn and PPy capped ZnS/Mn quantum dots reveal the effective photoluminescence emission spectra in the range of 300-700 nm. With increase the value of capping agent in ZnS/Mn quantum dots, photoluminescence spectra going to red shifting. The photoluminescence properties of the organically functionalized ZnS nanoparticles are favourable for the application in optoelectronic devices.


1997 ◽  
Vol 485 ◽  
Author(s):  
S. Nishiwaki ◽  
N. Kohara ◽  
T. Negami ◽  
M. Nishitani ◽  
T. Wada

AbstractThe interface between a Cu(In,Ga)Se2 (CIGS) and an underlying Mo layer was studied by X-ray diffraction and high resolution transmission electron microscopy. The CIGS layer was deposited onto Mo coated soda-lime glass using the “3-stage” process. A MoSe2 layer found to form at the CIGS/Mo interface during the 2nd stage of the “3-stage” process. The thickness of the MoSe2 layer depended on the substrate temperature used for CIGS film deposition as well as the Na content of the CIGS and/or Mo layers. For higher substrate temperatures, thicker MoSe2 layers were observed. The Na in the CIGS and/or Mo layer is felt to assist in the formation of MoSe2. Current-Voltage measurements of the heterojunction formed by the CIGS/Mo interface were ohmic even at low temperature. The role of the MoSe2 layer in high efficiency CIGS solar cells is discussed.


1996 ◽  
Vol 457 ◽  
Author(s):  
Bridget M. Smyser ◽  
Jane F. Connelly ◽  
Richard D. Sisson ◽  
Virgil Provenzano

ABSTRACTThe effects of grain size on the phase transformations in nanocrystalline ZrO2-Al2O3 have been experimentally investigated. Compositions from 10 to 50 vol% Al2O3 in ZrO2 were obtained as a hydroxide gel. The powders were then calcined at 600 °C for 17 hours and heat treated at 1100 °C for 24 and 120 hours and at 1200 °C for 2 hours. The phase distribution and grain size were determined using x-ray diffraction and transmission electron microscopy. The initial grain size after calcining was 8–17 nm. It was determined that the critical ZrO2 grain size to avoid the tetragonal to monoclinic phase transformation on cooling from 1100 °C was between 17 and 25 nm. Samples containing 50% Al2O3 maintained a grain size below the critical size for all times and temperatures. The 30% Al2O3 samples showed the same behavior in all but one heat treatment. The remainder of the samples showed significant grain growth and at least partial transformation to the monoclinic phase.


2014 ◽  
Vol 879 ◽  
pp. 155-163 ◽  
Author(s):  
Rahizana Mohd Ibrahim ◽  
Markom Masturah ◽  
Huda Abdullah

Nanoparticles of Zn1-xFexS ( x=0.0,0.1,0.2 and 0.3) were prepared by chemical co-precipitation method from homogenous solution of zinc and ferum salt at room temperature with controlled parameter. These nanoparticles were sterically stabilized using Sodium Hexamethaphospate (SHMP). Here, a study of the effect of Fe doping on structure, morphological and optical properties of nanoparticles was undertaken. Elemental analysis, morphological and optical properties have been investigated by Fourier-Transform-Infrared spectroscopy (FT-IR), X-Ray Fluorescence (XRF), Field Emmision Scanning Electron Microscopy (FESEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and UV-Visible Spectroscopy. FTIR measurement confirmed the presence of SHMP in the nanoparticles structure with the FESEM images depicting considerable less agglomeration of particles with the presence of SHMP. While XRF results confirm the presence of Fe2+ ion as prepared in the experiment. The particles sizes of the nanoparticles lay in the range of 2-10 nm obtained from the TEM image were in agreement with the XRD results. The absorption edge shifted to lower wavelengths with an increase in Fe concentration shown in the UV-Vis spectroscopy. The band gap energy value was in the range of 4.95 5.15 eV. The blueshift is attributed to the quantum confinement effect.


Sign in / Sign up

Export Citation Format

Share Document