scholarly journals Parametric Analysis of Rib Pillar Stability in a Longitudinal Sublevel Open Stoping Operation in an Underground Copper Mine in Southern Africa

2021 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Kostas Kaklis ◽  
Zach Agioutantis ◽  
Munyindei Masialeti ◽  
Jerome Yendaw ◽  
Thierry Bineli Betsi

The pillar stability factor (PSF) is calculated in three different mining stages for a sublevel open stoping mining project located in northern Botswana. Several three-dimensional finite element models were developed by varying the stope span. Pillar strength was estimated using the Lunder and Pakalnis equation and pillar stress was obtained from the numerical models. As mining progresses, both the first and second mining stages meet the rib pillar stability factor requirement for safe extraction. Geometrical improvements are suggested in the mining layout for the third mining stage to achieve the required PSF, which is based on international practices.

Author(s):  
Alireza Mohammadi ◽  
Walid S. Najjar

Typical coped stringers of streel bridges are prone to fatigue cracking as a result of the high concentration of tensile stress in the cope zone. This stress concentration is caused by a combination of geometric discontinuity at the cope radius and end-connection rigidity. Few retrofit methods are available for mitigating this cracking; they include hole drilling at a crack tip, and top-rivet removal from a stringer-floorbeam connection. Three-dimensional finite element models of a typical stringer with coped web were developed and analyzed to evaluate (i) cope geometry and load configuration parameters and (ii) the effectiveness of these two retrofit methods. The studied geometry parameters were cope radius and cope length. Variations in the cope-zone stress distribution for each parameter and between an original and a retrofitted condition are presented in this paper. Tensile stress reduction was associated with increased cope radius. Although hole drilling resulted in significant stress reduction along the cope edge, this method was associated with increased tensile stress at the bottom of the drilled hole, which could result in further crack propagation. This finding is consistent with existing studies. Removal of a top rivet resulted in significant reduction of tensile stress.


Author(s):  
Richard E. Smith ◽  
Stephen J. Speicher

There is an ever-increasing use of three-dimensional finite element models in the field of structural analysis to simulate structural response of complex geometries. Although these models are effective in simulating gross structural behavior, they are oftentimes not able to include sufficient detail to simulate small structural details where stress concentrations can occur. To overcome this limitation, sub-models can be used to calculate stresses in areas of peak stress. This paper discusses the process involved in calculating peak stresses in bolt head-to-shank interfaces using sub-modeling methods.


Tribologia ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 9-24 ◽  
Author(s):  
Oday I. ABDULLAH ◽  
Laith Abed SABRI ◽  
Wassan S. Abd Al-SAHB

Most of the failures in the sliding systems occur due to the high thermal stresses, which generated at the interface between the contacting surfaces due to sliding between parts, such as friction clutches and brakes. In this paper, the thermal behaviour of a single-disc clutch is investigated. The surface temperatures of the friction clutch disc will be increased during repeated engagements, in some cases, will lead to premature failure of the clutch disc. In order to avoid this kind of failure, it the surface temperature should be calculated with high accuracy to know the maximum working temperature of the friction system. In this work, the temperature distributions are computed during four repeated engagements at regular intervals (5 s) for the same energy dissipation. Three-dimensional finite element models are used to simulate the typical friction clutch disc.


2018 ◽  
Vol 35 (2) ◽  
pp. 604-621
Author(s):  
Rodrigo Pinto Carvalho ◽  
Igor A. Rodrigues Lopes ◽  
Francisco M. Andrade Pires

Purpose The purpose of this paper is to predict the yield locus of porous ductile materials, evaluate the impact of void geometry and compare the computational results with existing analytical models. Design/methodology/approach A computational homogenization strategy for the definition of the elasto-plastic transition is proposed. Representative volume elements (RVEs) containing single-centred ellipsoidal voids are analysed using three-dimensional finite element models under the geometrically non-linear hypothesis of finite strains. Yield curves are obtained by means of systematic analysis of RVEs considering different kinematical models: linear boundary displacements (upper bound), boundary displacement fluctuation periodicity and uniform boundary traction (lower bound). Findings The influence of void geometry is captured and the reduction in the material strength is observed. Analytical models usually overestimate the impact of void geometry on the yield locus. Originality/value This paper proposes an alternative criterion for porous ductile materials and assesses the accuracy of analytical models through the simulation of three-dimensional finite element models under geometrically non-linear hypothesis.


Sign in / Sign up

Export Citation Format

Share Document