scholarly journals Unified Local Convergence for Newton’s Method and Uniqueness of the Solution of Equations under Generalized Conditions in a Banach Space

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 463 ◽  
Author(s):  
Ioannis K. Argyros ◽  
Ángel Alberto Magreñán ◽  
Lara Orcos ◽  
Íñigo Sarría

Under the hypotheses that a function and its Fréchet derivative satisfy some generalized Newton–Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton’s method, and of the uniqueness ball for the solution of the equations, are given for Banach space-valued operators. Some of the existing results are improved with the advantages of larger convergence region, tighter error estimates on the distances involved, and at-least-as-precise information on the location of the solution. These advantages are obtained using the same functions and Lipschitz constants as in earlier studies. Numerical examples are used to test the theoretical results.

2021 ◽  
Vol 4 (1) ◽  
pp. 34-43
Author(s):  
Samundra Regmi ◽  
◽  
Ioannis K. Argyros ◽  
Santhosh George ◽  
◽  
...  

In this study a convergence analysis for a fast multi-step Chebyshe-Halley-type method for solving nonlinear equations involving Banach space valued operator is presented. We introduce a more precise convergence region containing the iterates leading to tighter Lipschitz constants and functions. This way advantages are obtained in both the local as well as the semi-local convergence case under the same computational cost such as: extended convergence domain, tighter error bounds on the distances involved and a more precise information on the location of the solution. The new technique can be used to extend the applicability of other iterative methods. The numerical examples further validate the theoretical results.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 299 ◽  
Author(s):  
Ioannis Argyros ◽  
Á. Magreñán ◽  
Lara Orcos ◽  
Íñigo Sarría

The aim of this paper is to present a new semi-local convergence analysis for Newton’s method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies and our new idea of restricted convergence domains, we extend the applicability of Newton’s method as follows: The convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. These advantages are obtained using the same information as before, since new Lipschitz constant are tighter and special cases of the ones used before. Numerical examples and applications are used to test favorable the theoretical results to earlier ones.


Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 114-127
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

The celebrated Traub’s method involving Banach space-defined operators is extended. The main feature in this study involves the determination of a subset of the original domain that also contains the Traub iterates. In the smaller domain, the Lipschitz constants are smaller too. Hence, a finer analysis is developed without the usage of additional conditions. This methodology applies to other methods. The examples justify the theoretical results.


2017 ◽  
Vol 23 (1) ◽  
pp. 79
Author(s):  
Leopoldo Paredes Soria ◽  
Pedro Canales García

Una nueva forma de convergencia de tipo Kantorovich para el me´todo de Newton es establecido para aproximarse localmente a una solucio´n u´nica de la ecuacio´n F (x) = 0 definido sobre un espacio de Banach. Se asume que el operador F es dos veces diferenciable Fre´chet, y que Fr, F rr satisface las condiciones de Lipschitz. Nuestra condicio´n de convergencia difiere de los me´todos conocidos y por lo tanto tiene un valor teo´rico y pra´ctico Palabras clave.-Operador lineal, Diferenciable Fre´chet, Sucesio´n convergente, Unicidad. ABSTRACTA new Kantorovich-type convergence theorem for Newton’s method is established for approximating a locally unique solution of an equation F (x) = 0 defined on a Banach space. It is assumed that the operator F is twice Fre´chet differentiable, and that Fr, F rr satisfy Lipschitz conditions. Our convergence condition differs from earlier ones and therefore it has theoretical and practical value. Keywords.-Linear operator, Differentiable Fre´chet, Convergent succession, Uniqueness.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1106
Author(s):  
Alicia Cordero ◽  
Jonathan Franceschi ◽  
Juan R. Torregrosa ◽  
Anna C. Zagati

Several authors have designed variants of Newton’s method for solving nonlinear equations by using different means. This technique involves a symmetry in the corresponding fixed-point operator. In this paper, some known results about mean-based variants of Newton’s method (MBN) are re-analyzed from the point of view of convex combinations. A new test is developed to study the order of convergence of general MBN. Furthermore, a generalization of the Lehmer mean is proposed and discussed. Numerical tests are provided to support the theoretical results obtained and to compare the different methods employed. Some dynamical planes of the analyzed methods on several equations are presented, revealing the great difference between the MBN when it comes to determining the set of starting points that ensure convergence and observing their symmetry in the complex plane.


Sign in / Sign up

Export Citation Format

Share Document