semilocal convergence
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Miguel A. Hernández-Verón ◽  
Sonia Yadav ◽  
Ángel Alberto Magreñán ◽  
Eulalia Martínez ◽  
Sukhjit Singh

Solving equations of the form H(x)=0 is one of the most faced problem in mathematics and in other science fields such as chemistry or physics. This kind of equations cannot be solved without the use of iterative methods. The Steffensen-type methods, defined using divided differences are derivative free, are usually considered to solve these problems when H is a non-differentiable operator due to its accuracy and efficiency. However, in general, the accessibility of these iterative methods is small. The main interest of this paper is to improve the accessibility of Steffensen-type methods, this is the set of starting points that converge to the roots applying those methods. So, by means of using a predictor–corrector iterative process we can improve this accessibility. For this, we use a predictor iterative process, using symmetric divided differences, with good accessibility and then, as corrector method, we consider the Center-Steffensen method with quadratic convergence. In addition, the dynamical studies presented show, in an experimental way, that this iterative process also improves the region of accessibility of Steffensen-type methods. Moreover, we analyze the semilocal convergence of the predictor–corrector iterative process proposed in two cases: when H is differentiable and H is non-differentiable. Summing up, we present an effective alternative for Newton’s method to non-differentiable operators, where this method cannot be applied. The theoretical results are illustrated with numerical experiments.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1957
Author(s):  
José M. Gutiérrez ◽  
Miguel Á. Hernández-Verón

In this paper, we present an iterative method based on the well-known Ulm’s method to numerically solve Fredholm integral equations of the second kind. We support our strategy in the symmetry between two well-known problems in Numerical Analysis: the solution of linear integral equations and the approximation of inverse operators. In this way, we obtain a two-folded algorithm that allows us to approximate, with quadratic order of convergence, the solution of the integral equation as well as the inverses at the solution of the derivative of the operator related to the problem. We have studied the semilocal convergence of the method and we have obtained the expression of the method in a particular case, given by some adequate initial choices. The theoretical results are illustrated with two applications to integral equations, given by symmetric non-separable kernels.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 161
Author(s):  
Alicia Cordero ◽  
Javier G. Maimó ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

In this work, we use the technique of recurrence relations to prove the semilocal convergence in Banach spaces of the multidimensional extension of Chun’s iterative method. This is an iterative method of fourth order, that can be transferred to the multivariable case by using the divided difference operator. We obtain the domain of existence and uniqueness by taking a suitable starting point and imposing a Lipschitz condition to the first Fréchet derivative in the whole domain. Moreover, we apply the theoretical results obtained to a nonlinear integral equation of Hammerstein type, showing the applicability of our results.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1640
Author(s):  
Petko D. Proinov ◽  
Milena D. Petkova

In this paper, we construct and study a new family of multi-point Ehrlich-type iterative methods for approximating all the zeros of a uni-variate polynomial simultaneously. The first member of this family is the two-point Ehrlich-type iterative method introduced and studied by Trićković and Petković in 1999. The main purpose of the paper is to provide local and semilocal convergence analysis of the multi-point Ehrlich-type methods. Our local convergence theorem is obtained by an approach that was introduced by the authors in 2020. Two numerical examples are presented to show the applicability of our semilocal convergence theorem.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yao Xiao ◽  
Qingbiao Wu ◽  
Yuanyuan Zhang

The preconditioned generalized shift-splitting (PGSS) iteration method is unconditionally convergent for solving saddle point problems with nonsymmetric coefficient matrices. By making use of the PGSS iteration as the inner solver for the Newton method, we establish a class of Newton-PGSS method for solving large sparse nonlinear system with nonsymmetric Jacobian matrices about saddle point problems. For the new presented method, we give the local convergence analysis and semilocal convergence analysis under Hölder condition, which is weaker than Lipschitz condition. In order to further raise the efficiency of the algorithm, we improve the method to obtain the modified Newton-PGSS and prove its local convergence. Furthermore, we compare our new methods with the Newton-RHSS method, which is a considerable method for solving large sparse nonlinear system with saddle point nonsymmetric Jacobian matrix, and the numerical results show the efficiency of our new method.


Author(s):  
Himanshu Kumar

AbstractThe purpose of this paper to establish the semilocal convergence analysis of three-step Kurchatov method under weaker conditions in Banach spaces. We construct the recurrence relations under the assumption that involved first-order divided difference operators satisfy the $$\omega $$ ω condition. Theorems are given for the existence-uniqueness balls enclosing the unique solution. The application of the iterative method is shown by solving nonlinear system of equations and nonlinear Hammerstein-type integral equations. It illustrates the theoretical development of this study.


Sign in / Sign up

Export Citation Format

Share Document