scholarly journals An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 672 ◽  
Author(s):  
Saima Akram ◽  
Fiza Zafar ◽  
Nusrat Yasmin

In this paper, we introduce a new family of efficient and optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity ( m ≥ 1 ) . We use the weight function approach involving one and two parameters to develop the new family. A comprehensive convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results formulated in this paper and illustrates that the suggested family is efficient among the domain of multiple root finding methods.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Alicia Cordero ◽  
Mojtaba Fardi ◽  
Mehdi Ghasemi ◽  
Juan R. Torregrosa

We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorithms with known ones and confirm the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Alicia Cordero ◽  
Moin-ud-Din Junjua ◽  
Juan R. Torregrosa ◽  
Nusrat Yasmin ◽  
Fiza Zafar

We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 310 ◽  
Author(s):  
Fiza Zafar ◽  
Alicia Cordero ◽  
Juan Torregrosa

Finding a repeated zero for a nonlinear equation f ( x ) = 0 , f : I ⊆ R → R has always been of much interest and attention due to its wide applications in many fields of science and engineering. Modified Newton’s method is usually applied to solve this kind of problems. Keeping in view that very few optimal higher-order convergent methods exist for multiple roots, we present a new family of optimal eighth-order convergent iterative methods for multiple roots with known multiplicity involving a multivariate weight function. The numerical performance of the proposed methods is analyzed extensively along with the basins of attractions. Real life models from life science, engineering, and physics are considered for the sake of comparison. The numerical experiments and dynamical analysis show that our proposed methods are efficient for determining multiple roots of nonlinear equations.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2194
Author(s):  
Francisco I. Chicharro ◽  
Rafael A. Contreras ◽  
Neus Garrido

A straightforward family of one-point multiple-root iterative methods is introduced. The family is generated using the technique of weight functions. The order of convergence of the family is determined in its convergence analysis, which shows the constraints that the weight function must satisfy to achieve order three. In this sense, a family of iterative methods can be obtained with a suitable design of the weight function. That is, an iterative algorithm that depends on one or more parameters is designed. This family of iterative methods, starting with proper initial estimations, generates a sequence of approximations to the solution of a problem. A dynamical analysis is also included in the manuscript to study the long-term behavior of the family depending on the parameter value and the initial guess considered. This analysis reveals the good properties of the family for a wide range of values of the parameter. In addition, a numerical test on academic and engineering multiple-root functions is performed.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 339
Author(s):  
Ramandeep Behl ◽  
Eulalia Martínez ◽  
Fabricio Cevallos ◽  
Diego Alarcón

The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev–Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for α = 2 , which corresponds to an optimal method in the sense of Kung and Traub’s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Saima Akram ◽  
Faiza Akram ◽  
Moin-ud-Din Junjua ◽  
Misbah Arshad ◽  
Tariq Afzal

In this manuscript, we present a new general family of optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity using weight functions. An extensive convergence analysis is presented to verify the optimal eighth order convergence of the new family. Some special cases of the family are also presented which require only three functions and one derivative evaluation at each iteration to reach optimal eighth order convergence. A variety of numerical test functions along with some real-world problems such as beam designing model and Van der Waals’ equation of state are presented to ensure that the newly developed family efficiently competes with the other existing methods. The dynamical analysis of the proposed methods is also presented to validate the theoretical results by using graphical tools, termed as the basins of attraction.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Taher Lotfi ◽  
Tahereh Eftekhari

Based on Ostrowski's method, a new family of eighth-order iterative methods for solving nonlinear equations by using weight function methods is presented. Per iteration the new methods require three evaluations of the function and one evaluation of its first derivative. Therefore, this family of methods has the efficiency index which equals 1.682. Kung and Traub conjectured that a multipoint iteration without memory based on n evaluations could achieve optimal convergence order 2n−1. Thus, we provide a new class which agrees with the conjecture of Kung-Traub for n=4. Numerical comparisons are made to show the performance of the presented methods.


2019 ◽  
Vol 24 (3) ◽  
pp. 422-444 ◽  
Author(s):  
Ramandeep Behl ◽  
Vinay Kanwar ◽  
Young Ik Kim

In this paper, we present many new one-parameter families of classical Rall’s method (modified Newton’s method), Schröder’s method, Halley’s method and super-Halley method for the first time which will converge even though the guess is far away from the desired root or the derivative is small in the vicinity of the root and have the same error equations as those of their original methods respectively, for multiple roots. Further, we also propose an optimal family of iterative methods of fourth-order convergence and converging to a required root in a stable manner without divergence, oscillation or jumping problems. All the methods considered here are found to be more effective than the similar robust methods available in the literature. In their dynamical study, it has been observed that the proposed methods have equal or better stability and robustness as compared to the other methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 776 ◽  
Author(s):  
Alicia Cordero ◽  
Cristina Jordán ◽  
Esther Sanabria ◽  
Juan R. Torregrosa

In this manuscript, a new family of Jacobian-free iterative methods for solving nonlinear systems is presented. The fourth-order convergence for all the elements of the class is established, proving, in addition, that one element of this family has order five. The proposed methods have four steps and, in all of them, the same divided difference operator appears. Numerical problems, including systems of academic interest and the system resulting from the discretization of the boundary problem described by Fisher’s equation, are shown to compare the performance of the proposed schemes with other known ones. The numerical tests are in concordance with the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document