scholarly journals Certain Fractional Proportional Integral Inequalities via Convex Functions

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 222 ◽  
Author(s):  
Gauhar Rahman ◽  
Kottakkaran Sooppy Nisar ◽  
Thabet Abdeljawad ◽  
Samee Ullah

The goal of this article is to establish some fractional proportional integral inequalities for convex functions by employing proportional fractional integral operators. In addition, we establish some classical integral inequalities as the special cases of our main findings.

Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5595-5609
Author(s):  
Erhan Set

Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the Riemann-Liouville fractional integral operator involving a class of functions defined formally by F? ?,?(x)=??,k=0 ?(k)/?(?k + ?)xk. Using this fractional integral operator, in the present note, we establish some new fractional integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville fractional integral operators.


2021 ◽  
Vol 29 (2) ◽  
pp. 205-219 ◽  
Author(s):  
SAIMA RASHID ◽  
AHMET OCAK AKDEMIR ◽  
MUHAMMAD ASLAM NOOR ◽  
KHALIDA INAYAT NOOR

We establish several basic inequalities versions of the Hermite-Hadamard type inequalities for GA− and GG−convexity for conformable fractional integrals. Several special cases are also discussed, which can be deduced from our main result.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
D. Baleanu ◽  
S. D. Purohit ◽  
Praveen Agarwal

Here we aim at establishing certain new fractional integral inequalities involving the Gauss hypergeometric function for synchronous functions which are related to the Chebyshev functional. Several special cases as fractional integral inequalities involving Saigo, Erdélyi-Kober, and Riemann-Liouville type fractional integral operators are presented in the concluding section. Further, we also consider their relevance with other related known results.


2021 ◽  
Vol 17 (1) ◽  
pp. 37-64
Author(s):  
A. Kashuri ◽  
M.A. Ali ◽  
M. Abbas ◽  
M. Toseef

Abstract In this paper, authors establish a new identity for a differentiable function using generic integral operators. By applying it, some new integral inequalities of trapezium, Ostrowski and Simpson type are obtained. Moreover, several special cases have been studied in detail. Finally, many useful applications have been found.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
Muhammad Bilal Khan ◽  
Hatim Ghazi Zaini ◽  
Savin Treanțǎ ◽  
Mohamed S. Soliman ◽  
Kamsing Nonlaopon

The concepts of convex and non-convex functions play a key role in the study of optimization. So, with the help of these ideas, some inequalities can also be established. Moreover, the principles of convexity and symmetry are inextricably linked. In the last two years, convexity and symmetry have emerged as a new field due to considerable association. In this paper, we study a new version of interval-valued functions (I-V·Fs), known as left and right χ-pre-invex interval-valued functions (LR-χ-pre-invex I-V·Fs). For this class of non-convex I-V·Fs, we derive numerous new dynamic inequalities interval Riemann–Liouville fractional integral operators. The applications of these repercussions are taken into account in a unique way. In addition, instructive instances are provided to aid our conclusions. Meanwhile, we’ll discuss a few specific examples that may be extrapolated from our primary findings.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ghulam Farid ◽  
Yu-Ming Chu ◽  
Maja Andrić ◽  
Chahn Yong Jung ◽  
Josip Pečarić ◽  
...  

In this paper, the refinements of integral inequalities for all those types of convex functions are given which can be obtained from s , m -convex functions. These inequalities not only provide refinements of bounds for unified integral operators but also for various associated fractional integral operators containing Mittag–Leffler function. At the same time, presented results give generalizations of many known fractional integral inequalities.


2020 ◽  
Vol 57 (3) ◽  
pp. 312-320
Author(s):  
Péter Kórus ◽  
Luciano M. Lugo ◽  
Juan E. Nápoles Valdés

AbstractIn this paper we present different variants of the well-known Hermite–Hadamard inequality, in a generalized context. We consider general fractional integral operators for h-convex and r-convex functions.


2019 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Seren Salaş ◽  
Yeter Erdaş ◽  
Tekin Toplu ◽  
Erhan Set

In this paper, firstly we have established a new generalization of Hermite–Hadamard inequality via p-convex function and fractional integral operators which generalize the Riemann–Liouville fractional integral operators introduced by Raina, Lun and Agarwal. Secondly, we proved a new identity involving this generalized fractional integral operators. Then, by using this identity, a new generalization of Hermite–Hadamard type inequalities for fractional integral are obtained.


2016 ◽  
Vol 14 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Dumitru Baleanu ◽  
Sunil Dutt Purohit ◽  
Jyotindra C. Prajapati

AbstractUsing the generalized Erdélyi-Kober fractional integrals, an attempt is made to establish certain new fractional integral inequalities, related to the weighted version of the Chebyshev functional. The results given earlier by Purohit and Raina (2013) and Dahmani et al. (2011) are special cases of results obtained in present paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chahn Yong Jung ◽  
Muhammad Yussouf ◽  
Yu-Ming Chu ◽  
Ghulam Farid ◽  
Shin Min Kang

In this paper, we define a new function, namely, harmonically α , h − m -convex function, which unifies various kinds of harmonically convex functions. Generalized versions of the Hadamard and the Fejér–Hadamard fractional integral inequalities for harmonically α , h − m -convex functions via generalized fractional integral operators are proved. From presented results, a series of fractional integral inequalities can be obtained for harmonically convex, harmonically h − m -convex, harmonically α , m -convex, and related functions and for already known fractional integral operators.


Sign in / Sign up

Export Citation Format

Share Document