scholarly journals A Guide to Special Functions in Fractional Calculus

Mathematics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 106
Author(s):  
Virginia Kiryakova

Dedicated to the memory of Professor Richard Askey (1933–2019) and to pay tribute to the Bateman Project. Harry Bateman planned his “shoe-boxes” project (accomplished after his death as Higher Transcendental Functions, Vols. 1–3, 1953–1955, under the editorship by A. Erdélyi) as a “Guide to the Functions”. This inspired the author to use the modified title of the present survey. Most of the standard (classical) Special Functions are representable in terms of the Meijer G-function and, specially, of the generalized hypergeometric functions pFq. These appeared as solutions of differential equations in mathematical physics and other applied sciences that are of integer order, usually of second order. However, recently, mathematical models of fractional order are preferred because they reflect more adequately the nature and various social events, and these needs attracted attention to “new” classes of special functions as their solutions, the so-called Special Functions of Fractional Calculus (SF of FC). Generally, under this notion, we have in mind the Fox H-functions, their most widely used cases of the Wright generalized hypergeometric functions pΨq and, in particular, the Mittag–Leffler type functions, among them the “Queen function of fractional calculus”, the Mittag–Leffler function. These fractional indices/parameters extensions of the classical special functions became an unavoidable tool when fractalized models of phenomena and events are treated. Here, we try to review some of the basic results on the theory of the SF of FC, obtained in the author’s works for more than 30 years, and support the wide spreading and important role of these functions by several examples.

Author(s):  
Anatoly Kilbas ◽  
Anna Koroleva ◽  
Sergei Rogosin

AbstractThis paper surveys one of the last contributions by the late Professor Anatoly Kilbas (1948–2010) and research made under his advisorship. We briefly describe the historical development of the theory of the discussed multi-parametric Mittag-Leffler functions as a class of the Wright generalized hypergeometric functions. The method of the Mellin-Barnes integral representations allows us to extend the considered functions to the case of arbitrary values of parameters. Thus, the extended Mittag-Leffler-type functions appear. The properties of these special functions and their relations to the fractional calculus are considered. Our results are based mainly on the properties of the Fox H-functions, as one of the widest class of special functions.


Author(s):  
Even Mehlum ◽  
Jet Wimp

AbstractWe show that the position vector of any 3-space curve lying on a sphere satisfies a third-order linear (vector) differential equation whose coefficients involve a single arbitrary function A(s). By making various identifications of A(s), we are led to nonlinear identities for a number of higher transcendental functions: Bessel functions, Horn functions, generalized hypergeometric functions, etc. These can be considered natural geometrical generalizations of sin2t + cos2t = 1. We conclude with some applications to the theory of splines.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
N. J. Hassan ◽  
A. Hawad Nasar ◽  
J. Mahdi Hadad

In this paper, we derive the cumulative distribution functions (CDF) and probability density functions (PDF) of the ratio and product of two independent Weibull and Lindley random variables. The moment generating functions (MGF) and the k-moment are driven from the ratio and product cases. In these derivations, we use some special functions, for instance, generalized hypergeometric functions, confluent hypergeometric functions, and the parabolic cylinder functions. Finally, we draw the PDF and CDF in many values of the parameters.


1987 ◽  
Vol 106 ◽  
pp. 1-28 ◽  
Author(s):  
H. M. Srivastava ◽  
Shigeyoshi Owa

By using a certain linear operator defined by a Hadamard product or convolution, several interesting subclasses of analytic functions in the unit disk are introduced and studied systematically. The various results presented here include, for example, a number of coefficient estimates and distortion theorems for functions belonging to these subclasses, some interesting relationships between these subclasses, and a wide variety of characterization theorems involving a certain functional, some general functions of hypergeometric type, and operators of fractional calculus. Some of the coefficient estimates obtained here are fruitfully applied in the investigation of certain subclasses of analytic functions with fixed finitely many coefficients.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
M. K. Aouf ◽  
A. O. Moustafa ◽  
E. A. Adwan

We introduce a new class of multivalent harmonic functions defi…ned by Wright generalized hypergeometric function. Coefficient estimates, extreme points, distortion bounds, and convex combination for functions belonging to this class are obtained.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3255
Author(s):  
Alexander Apelblat ◽  
Juan Luis González-Santander

Integral Mittag-Leffler, Whittaker and Wright functions with integrands similar to those which already exist in mathematical literature are introduced for the first time. For particular values of parameters, they can be presented in closed-form. In most reported cases, these new integral functions are expressed as generalized hypergeometric functions but also in terms of elementary and special functions. The behavior of some of the new integral functions is presented in graphical form. By using the MATHEMATICA program to obtain infinite sums that define the Mittag-Leffler, Whittaker, and Wright functions and also their corresponding integral functions, these functions and many new Laplace transforms of them are also reported in the Appendices for integral and fractional values of parameters.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Muhammad Jamil ◽  
Najeeb Alam Khan

Unsteady flow of an incompressible Maxwell fluid with fractional derivative induced by a sudden moved plate has been studied, where the no-slip assumption between the wall and the fluid is no longer valid. The solutions obtained for the velocity field and shear stress, written in terms of Wright generalized hypergeometric functions , by using discrete Laplace transform of the sequential fractional derivatives, satisfy all imposed initial and boundary conditions. The no-slip contributions, that appeared in the general solutions, as expected, tend to zero when slip parameter is . Furthermore, the solutions for ordinary Maxwell and Newtonian fluids, performing the same motion, are obtained as special cases of general solutions. The solutions for fractional and ordinary Maxwell fluid for no-slip condition also obtained as limiting cases, and they are equivalent to the previously known results. Finally, the influence of the material, slip, and the fractional parameters on the fluid motion as well as a comparison among fractional Maxwell, ordinary Maxwell, and Newtonian fluids is also discussed by graphical illustrations.


Sign in / Sign up

Export Citation Format

Share Document