confluent hypergeometric functions
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
H. Merad ◽  
F. Merghadi ◽  
A. Merad

In this paper, we present an exact solution of the Klein–Gordon equation in the framework of the fractional-dimensional space, in which the momentum and position operators satisfying the R-deformed Heisenberg algebras. Accordingly, three essential problems have been solved such as: the free Klein–Gordon equation, the Klein–Gordon equation with mixed scalar and vector linear potentials and with mixed scalar and vector inversely linear potentials of Coulomb-type. For all these considered cases, the expressions of the eigenfunctions are determined and expressed in terms of the special functions: the Bessel functions of the first kind for the free case, the biconfluent Heun functions for the second case and the confluent hypergeometric functions for the end case, and the corresponding eigenvalues are exactly obtained.


2021 ◽  
Vol 5 (4) ◽  
pp. 143
Author(s):  
F. Ghanim ◽  
Hiba F. Al-Janaby ◽  
Omar Bazighifan

This article uses fractional calculus to create novel links between the well-known Mittag-Leffler functions of one, two, three, and four parameters. Hence, this paper studies several new analytical properties using fractional integration and differentiation for the Mittag-Leffler function formulated by confluent hypergeometric functions. We construct a four-parameter integral expression in terms of one-parameter. The paper explains the significance and applications of each of the four Mittag-Leffler functions, with the goal of using our findings to make analyzing specific kinds of experimental results considerably simpler.


2021 ◽  
Vol 42 (3) ◽  
pp. 663-676
Author(s):  
Umar Muhammad ABUBAKAR ◽  
Muhammad Lawan KAURANGİNİ

2021 ◽  
Vol 6 (2) ◽  
pp. 852
Author(s):  
UMAR MUHAMMAD ABUBAKAR ◽  
Soraj Patel

Various extensions of classical gamma, beta, Gauss hypergeometric and confluent hypergeometric functions have been proposed recently by many researchers. In this paper, we further generalized extended beta function with some of its properties such as symmetric properties, summation formulas, integral representations, connection with some other special functions such as classical beta, error, Mittag – Leffler, incomplete gamma, hypergeometric, classical Wright, Fox – Wright, Fox H and Meijer G – functions. Furthermore, the generalized beta function is used to generalize classical and other extended Gauss hypergeometric, confluent hypergeometric, Appell’s and Lauricella’s functions.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1871
Author(s):  
Matt G. Hall ◽  
Carson Ingo

In this article, we consider how differing approaches that characterize biological microstructure with diffusion weighted magnetic resonance imaging intersect. Without geometrical boundary assumptions, there are techniques that make use of power law behavior which can be derived from a generalized diffusion equation or intuited heuristically as a time dependent diffusion process. Alternatively, by treating biological microstructure (e.g., myelinated axons) as an amalgam of stick-like geometrical entities, there are approaches that can be derived utilizing convolution-based methods, such as the spherical means technique. Since data acquisition requires that multiple diffusion weighting sensitization conditions or b-values are sampled, this suggests that implicit mutual information may be contained within each technique. The information intersection becomes most apparent when the power law exponent approaches a value of 12, whereby the functional form of the power law converges with the explicit stick-like geometric structure by way of confluent hypergeometric functions. While a value of 12 is useful for the case of solely impermeable fibers, values that diverge from 12 may also reveal deep connections between approaches, and potentially provide insight into the presence of compartmentation, exchange, and permeability within heterogeneous biological microstructures. All together, these disparate approaches provide a unique opportunity to more completely characterize the biological origins of observed changes to the diffusion attenuated signal.


Author(s):  
T. M. Dunster

Uniform asymptotic expansions are derived for Whittaker’s confluent hypergeometric functions M κ , μ ( z ) and W κ , μ ( z ) , as well as the numerically satisfactory companion function W − κ , μ ( z   e − π i ) . The expansions are uniformly valid for μ → ∞ , 0 ≤ κ / μ ≤ 1 − δ < 1 and 0 ≤ arg ⁡ ( z ) ≤ π . By using appropriate connection and analytic continuation formulae, these expansions can be extended to all unbounded non-zero complex z . The approximations come from recent asymptotic expansions involving elementary functions and Airy functions, and explicit error bounds are either provided or available.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nabiullah Khan ◽  
Talha Usman ◽  
Mohd Aman ◽  
Shrideh Al-Omari ◽  
Junesang Choi

Abstract Various extensions of the beta function together with their associated extended hypergeometric and confluent hypergeometric functions have been introduced and investigated. In this paper, using the very recently contrived extended beta function, we aim to introduce an extension F v p , q ; λ ; σ , τ u {{}_{u}F_{v}^{p,q;\lambda;\sigma,\tau}} of the generalized hypergeometric function F v u {{}_{u}F_{v}} and investigate certain classes of transforms and several identities of a generalized probability distribution involving this extension. In fact, we present some interesting formulas of Jacobi, Gegenbauer, pathway, Laplace, and Legendre transforms of this extension multiplied by a polynomial. We also introduce a generalized probability distribution to investigate its several related properties. Further, we consider some special cases of our main results with an argument about the derived process of a known result.


2021 ◽  
Vol 136 (7) ◽  
Author(s):  
K. Bencheikh ◽  
L. M. Nieto ◽  
L. U. Ancarani

AbstractFor a harmonically trapped system consisting of two bosons in one spatial dimension with infinite contact repulsion (hard core bosons), we derive an expression for the one-body density matrix $$\rho _\mathrm{B}$$ ρ B in terms of center of mass and relative coordinates of the particles. The deviation from $$\rho _\mathrm{F}$$ ρ F , the density matrix for the two fermions case, can be clearly identified. Moreover, the obtained $$\rho _\mathrm{B}$$ ρ B allows us to derive a closed form expression of the corresponding momentum distribution $$n_\mathrm{B}(p)$$ n B ( p ) . We show how the result deviates from the noninteracting fermionic case, the deviation being associated with the short-range character of the interaction. Mathematically, our analytical momentum distribution is expressed in terms of one and two variables confluent hypergeometric functions. Our formula satisfies the correct normalization and possesses the expected behavior at zero momentum. It also exhibits the high momentum $$1/p^4 $$ 1 / p 4 tail with the appropriate Tan’s coefficient. Numerical results support our findings.


2021 ◽  
Vol 24 (2) ◽  
pp. 203-206
Author(s):  
V. V. Kudryashov ◽  
A. V. Baran

The spherically symmetric potential is considered whose dependence on the distance r is described by the smooth composition of Coulomb at r < r0 and oscillator at r > r0 potentials. The boundary distance r0 is determined by the parameters of these potentials. The exact continuous solution of the radial Schrödinger equation is expressed in terms of the confluent hypergeometric functions. The discrete energy levels are obtained. The graphic illustrations for the energy spectrum and the radial wave functions are presented.


2021 ◽  
Vol 20 ◽  
pp. 196-206
Author(s):  
Daya K. Nagar ◽  
Edwin Zarrazola ◽  
Alejandro Roldán-Correa

The Kummer-gamma distribution is an extension of gamma distribution and for certain values of parameters slides to a bimodal distribution. In this article, we introduce a bivariate distribution with Kummer-gamma conditionals and call it the conditionally specified bivariate Kummer-gamma distribution/bivariate Kummer-gamma conditionals distribution. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities, and conditional moments. We also discuss several important properties including, entropies, distributions of sum, and quotient. Most of these representations involve special functions such as the Gauss and the confluent hypergeometric functions. The bivariate Kummer-gamma conditionals distribution studied in this article may serve as an alternative to many existing bivariate models with support on (0, ∞) × (0, ∞).


Sign in / Sign up

Export Citation Format

Share Document