scholarly journals Hesitant Fuzzy Linguistic Agglomerative Hierarchical Clustering Algorithm and Its Application in Judicial Practice

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 370
Author(s):  
Shuangsheng Wu ◽  
Jie Lin ◽  
Zhenyu Zhang ◽  
Yushu Yang

The fuzzy clustering algorithm has become a research hotspot in many fields because of its better clustering effect and data expression ability. However, little research focuses on the clustering of hesitant fuzzy linguistic term sets (HFLTSs). To fill in the research gaps, we extend the data type of clustering to hesitant fuzzy linguistic information. A kind of hesitant fuzzy linguistic agglomerative hierarchical clustering algorithm is proposed. Furthermore, we propose a hesitant fuzzy linguistic Boole matrix clustering algorithm and compare the two clustering algorithms. The proposed clustering algorithms are applied in the field of judicial execution, which provides decision support for the executive judge to determine the focus of the investigation and the control. A clustering example verifies the clustering algorithm’s effectiveness in the context of hesitant fuzzy linguistic decision information.

Author(s):  
Mohana Priya K ◽  
Pooja Ragavi S ◽  
Krishna Priya G

Clustering is the process of grouping objects into subsets that have meaning in the context of a particular problem. It does not rely on predefined classes. It is referred to as an unsupervised learning method because no information is provided about the "right answer" for any of the objects. Many clustering algorithms have been proposed and are used based on different applications. Sentence clustering is one of best clustering technique. Hierarchical Clustering Algorithm is applied for multiple levels for accuracy. For tagging purpose POS tagger, porter stemmer is used. WordNet dictionary is utilized for determining the similarity by invoking the Jiang Conrath and Cosine similarity measure. Grouping is performed with respect to the highest similarity measure value with a mean threshold. This paper incorporates many parameters for finding similarity between words. In order to identify the disambiguated words, the sense identification is performed for the adjectives and comparison is performed. semcor and machine learning datasets are employed. On comparing with previous results for WSD, our work has improvised a lot which gives a percentage of 91.2%


2021 ◽  
Vol 8 (10) ◽  
pp. 43-50
Author(s):  
Truong et al. ◽  

Clustering is a fundamental technique in data mining and machine learning. Recently, many researchers are interested in the problem of clustering categorical data and several new approaches have been proposed. One of the successful and pioneering clustering algorithms is the Minimum-Minimum Roughness algorithm (MMR) which is a top-down hierarchical clustering algorithm and can handle the uncertainty in clustering categorical data. However, MMR tends to choose the category with less value leaf node with more objects, leading to undesirable clustering results. To overcome such shortcomings, this paper proposes an improved version of the MMR algorithm for clustering categorical data, called IMMR (Improved Minimum-Minimum Roughness). Experimental results on actual data sets taken from UCI show that the IMMR algorithm outperforms MMR in clustering categorical data.


2021 ◽  
Vol 19 ◽  
pp. 310-320
Author(s):  
Suboh Alkhushayni ◽  
Taeyoung Choi ◽  
Du’a Alzaleq

This work aims to expand the knowledge of the area of data analysis through both persistence homology, as well as representations of directed graphs. To be specific, we looked for how we can analyze homology cluster groups using agglomerative Hierarchical Clustering algorithms and methods. Additionally, the Wine data, which is offered in R studio, was analyzed using various cluster algorithms such as Hierarchical Clustering, K-Means Clustering, and PAM Clustering. The goal of the analysis was to find out which cluster's method is proper for a given numerical data set. By testing the data, we tried to find the agglomerative hierarchical clustering method that will be the optimal clustering algorithm among these three; K-Means, PAM, and Random Forest methods. By comparing each model's accuracy value with cultivar coefficients, we came with a conclusion that K-Means methods are the most helpful when working with numerical variables. On the other hand, PAM clustering and Gower with random forest are the most beneficial approaches when working with categorical variables. All these tests can determine the optimal number of clustering groups, given the data set, and by doing the proper analysis. Using those the project, we can apply our method to several industrial areas such that clinical, business, and others. For example, people can make different groups based on each patient who has a common disease, required therapy, and other things in the clinical society. Additionally, for the business area, people can expect to get several clustered groups based on the marginal profit, marginal cost, or other economic indicators.


Author(s):  
Yukihiro Hamasuna ◽  
◽  
Yasunori Endo ◽  
Sadaaki Miyamoto ◽  

This paper presents semi-supervised agglomerative hierarchical clustering algorithm using clusterwise tolerance based pairwise constraints. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link, are frequently used in order to improve clustering properties. From that sense, we will propose another way named clusterwise tolerance based pairwise constraints to handle must-link and cannot-link constraints inL2-space. In addition, we will propose semi-supervised agglomerative hierarchical clustering algorithm based on it. We will, moreover, show the effectiveness of the proposed method through numerical examples.


Sign in / Sign up

Export Citation Format

Share Document