scholarly journals Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis sp.: Characterization, Antimicrobial and Diabetic Wound-Healing Actions

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 56
Author(s):  
Nancy S. Younis ◽  
Maged E. Mohamed ◽  
Nermin A. El Semary

Green nanotechnology is now accepted as an environmentally friendly and cost-effective advance with various biomedical applications. The cyanobacterium Synechocystis sp. is a unicellular spherical cyanobacterium with photo- and hetero-trophic capabilities. This study investigates the ability of this cyanobacterial species to produce silver nanoparticles (AgNPs) and the wound-healing properties of the produced nanoparticles in diabetic animals. Methods: UV–visible and FT-IR spectroscopy and and electron microscopy techniques investigated AgNPs’ producibility by Synechocystis sp. when supplemented with silver ion source. The produced AgNPs were evaluated for their antimicrobial, anti-oxidative, anti-inflammatory, and diabetic wound healing along with their angiogenesis potential. Results: The cyanobacterium biosynthesized spherical AgNPs with a diameter range of 10 to 35 nm. The produced AgNPs exhibited wound-healing properties verified with increased contraction percentage, tensile strength and hydroxyproline level in incision diabetic wounded animals. AgNPs treatment decreased epithelialization period, amplified the wound closure percentage, and elevated collagen, hydroxyproline and hexosamine contents, which improved angiogenesis factors’ contents (HIF-1α, TGF-β1 and VEGF) in excision wound models. AgNPs intensified catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, and glutathione (GSH) and nitric oxide content and reduced malondialdehyde (MDA) level. IL-1β, IL-6, TNF-α, and NF-κB (the inflammatory mediators) were decreased with AgNPs’ topical application. Conclusion: Biosynthesized AgNPs via Synechocystis sp. exhibited antimicrobial, anti-oxidative, anti-inflammatory, and angiogenesis promoting effects in diabetic wounded animals.

2021 ◽  
Vol 19 ◽  
pp. 228080002110549
Author(s):  
Michael Rodrigues ◽  
Thilagavati Govindharajan

A hydrocellular functional material as a wound dressing is developed and it is found to be superior in its efficacy as compared to some of the comparator controls in diabetic wound healing studies. A study on wound contraction and Histopathological analysis is done in rats. The efficacy of the dressing is comparable to the established wound dressings like Carboxymethyl cellulose alginate dressings and autolytic enzyme based hydrogel. It is found to be superior to Polyhexamethylene biguanide dressing used as reference controls in this study. The reason for good wound healing performance of the dressing can be attributed to a combined property of effective exudates management and broad spectrum antimicrobial effect. The concept of functional hydro cellular material has shown good results due to the excellent balance of exudates pickup and drying it out. This ensures moist wound healing conditions on the wound. Because of its porous nature it allows good air flow and gaseous exchange in the structure. The cationic sites created on the surface of the dressing ensure a good antimicrobial action on the exudates in the dressing. It reduces the infection load on the wound. The nonleaching property of the dressing also helps in preventing the generation of more resistant and mutant strains of the microbes. The developed dressing can be used as a relatively durable long lasting dressing for wound management in diabetic wounds. The need of repetitive wound dressing changes can be brought down with this concept of dressing. It is not only cost effective in terms of its material cost but also is a cost effective solution when entire wound management cost is considered. Such novel wound dressing material can change the quality of life of diabetic wound patients especially in developing world, where access to functional advanced wound care dressings is limited.


2017 ◽  
Vol 105 ◽  
pp. 45-55 ◽  
Author(s):  
Rubbel Singla ◽  
Sourabh Soni ◽  
Vikram Patial ◽  
Pankaj Markand Kulurkar ◽  
Avnesh Kumari ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Shixuan Chen ◽  
Junbin Shi ◽  
Min Zhang ◽  
Yinghua Chen ◽  
Xueer Wang ◽  
...  

2021 ◽  
Author(s):  
Reena Bhadhwar ◽  
Bharti Mangla ◽  
Yub Raj Neupane ◽  
Kushagra Khanna ◽  
Harvinder Popli

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
CBS Lau ◽  
VKM Lau ◽  
CL Liu ◽  
PKK Lai ◽  
JCW Tam ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 634-P
Author(s):  
PIUL S. RABBANI ◽  
JOSHUA A. DAVID ◽  
DARREN L. SULTAN ◽  
ALVARO P. VILLARREAL-PONCE ◽  
JENNIFER KWONG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document