scholarly journals Electrodeposition of Indium from an Ionic Liquid Investigated by In Situ Electrochemical XPS

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Zhen Liu ◽  
Jun Cheng ◽  
Oliver Höfft ◽  
Frank Endres

The electrochemical behavior and electrodeposition of indium in an electrolyte composed of 0.1 mol/L InCl3 in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSI) on a gold electrode were investigated. The cyclic voltammogram revealed several reduction and oxidation peaks, indicating a complex electrochemical behavior. In the cathodic regime, with the formation of an In-Au alloy, the reduction of In(III) to In(I) and of In(I) to In(0) takes place. In situ electrochemical X-ray photoelectron spectroscopy (XPS) was employed to investigate the reduction process by monitoring the oxidation states of the components during the cathodic polarization of 0.1 mol/L InCl3/[Py1,4]TFSI on a gold working electrode under ultra-high vacuum (UHV) conditions. The core electron binding energies of the IL components (C 1s, O 1s, F 1s, N 1s, and S 2p) shift almost linearly to more negative values as a function of the applied cell voltage. At −2.0 V versus Pt-quasi reference, In(I) was identified as the intermediate species during the reduction process. In the anodic regime, a strong increase in the pressure in the XPS chamber was recorded at a cell voltage of more than −0.5 V versus Pt quasi reference, which indicated, in addition to the oxidation reactions of In species, that the oxidation of Cl− occurs. Ex situ XPS and XRD results revealed the formation of metallic In and of an In-Au alloy.

Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


1998 ◽  
Vol 548 ◽  
Author(s):  
Greg Vovk ◽  
Xiaohua Chen ◽  
Charles A. Mims

ABSTRACTAn in-situ XPS and voltammetry investigation of the redox properties of LaCrj1-xNixO3(x = 0.4, 1) was carried out by incorporating the materials as one electrode in an electrochemical cell (LaCr1xNixO3|YSZ|Pd:PdO), which was directly mounted on a heated sample stage in an ultra high vacuum (UHV) chamber. Under a 0.7V cathodic bias, the perovskites reduce from formal oxidation state of Ni3+ to Ni2+. This reduction is accompanied by wholesale shifts of the Cr and O core level binding energies, in keeping with the delocalized electronic states in the material. The adsorption properties of the surfaces are affected by the redox state of the surfaces; increased CO2adsorption is observed on the reduced (and therefore more basic) surface.


1994 ◽  
Vol 337 ◽  
Author(s):  
L. Bellard ◽  
J.M. Themlin ◽  
F. Palmino ◽  
A. Cros

ABSTRACTWe have investigated the microscopic properties of copper and chromium layers deposited on polyphenylquinoxaline (PPQ). PPQ is a thermostable polymer used for multichip module applications. The metal is deposited under ultra-high vacuum conditions and analysed in-situ by X-ray photoemission (XPS) and atomic force microscopy (ex situ). Copper does not react significantly with the PPQ and tends to diffuse into the polymer matrix upon annealing. On the contrary, chromium strongly reacts with the polymer surface at room temperature. With increasing metal coverage, chromium grows in a layer-by-layer mode and the reacted interface is progressively burried under the pure metal layer.


1992 ◽  
Vol 259 ◽  
Author(s):  
S. Banerjee ◽  
A. Tasch ◽  
T. Hsu ◽  
R. Qian ◽  
D. Kinosky ◽  
...  

ABSTRACTRemote Plasma-enhanced Chemical Vapor Deposition (RPCVD), which involves nonthermal, remote plasma excitation of precursors, has been demonstrated to be a novel and attractive technique for low temperature (150-450C) Si and Sil-xGex epitaxy for applications in Si ULSI and novel Si heterostructure devices which require compact doping profiles and/or heterointerfaces. An in situ low temperature remote hydrogen plasma clean in the Ultra-High Vacuum (UHV) deposition chamber in order to achieve a chemically passive, hydrogenated Si surface with minimal O, C and N contamination, is a critical component of the process. The ex situ wet chemical cleaning consists of ultrasonic degreasing and a modified RCA clean, followed by a final dilute HF dip. The in situ clean is achieved by remote plasma excited H, where H introduced through the plasma column is r-f excited such that the plasma glow does not engulf the wafer. In situ AES analysis shows that the remote H plasma clean results in very substantial reduction of the C, O and N contamination on the Si surface. We believe that the H plasma produces atomic H which, in turn, produces a reducing environment and has a slight etching effect on Si and SiO2 by converting them to volatile byproducts. TEM analysis of the wafers subjected to this clean indicate that defect-free surfaces with dislocation loop densities below TEM detection limits of 105 /cm2 are achievable. Corroborating evidence of achieving an atomically clean, smooth Si surface by remote H plasma clean as obtained from in situ RHEED analysis will also be presented. After in situ H cleaning at low pressures (45 mTorr), typically for 30 min. at a substrate temperature of 310 C, we observe both stronger integral order streaks compared to the as-loaded sample and the appearance of less intense half-order lines indicative of a (2 × 1) reconstruction pattern, indicating a monohydride termination. A (3 × 1) reconstruction pattern is observed upon H plasma clean at lower temperatures (250 C), which can be attributed to an alternating monohydride and dihydride termination. Results of air exposure of hydrogenated Si surfaces by AES analysis indicate that the (3 × l) termination is chemically more inert towards readsorption of C and 0. Successful Si homoepitaxy and Si/Sil-xGex heteroepitaxy under a variety of surface cleaning conditions prove that by a combination of these cleaning techniques, and by exploiting the inertness of the H-passivated Si surface, very low defect density films with 0 and C levels as low as 1X1018 cm−3 and 5×1017 cm−3, respectively, can be achieved.


1990 ◽  
Vol 201 ◽  
Author(s):  
B. Fowler ◽  
T. Lian ◽  
D. Bullock ◽  
S. Banerjee

AbstractPhotolysis of Si2H6 by an ArF excimer laser has been used to deposit Si homoepitaxial layers at temperatures as low as 300°C. The chemical vapor deposition process at growth rates from 0.5-4 Å/minute is performed in an ultra-high vacuum chamber which, along with an ex situ HF dip and a novel in situ hydrogen clean using laser excitation, results in minimization of oxygen and carbon contamination which inhibits Si epitaxy. The growth involves photolytic decomposition of Si2H6 and the generation and adsorption of SiH2 precursors on the hydrogenated Si surface, which is the rate limiting step. Growth rates are observed to vary proportionally with laser power. Very low defect density films in terms of stacking faults and dislocation loops (less than 105 cm−2), and excellent crystallinity have been deposited as confirmed by Schimmel etching and Nomarski microscopy, transmission electron microscopy, electron diffraction and in situ reflection high energy electron diffraction.


2002 ◽  
Vol 742 ◽  
Author(s):  
C. Calmes ◽  
V. Le ◽  
D. Bouchier ◽  
S. E. Saddow ◽  
V. Yam ◽  
...  

AbstractWe report our first results using a ultra high vacuum chemical vapor deposition (UHV-CVD) system to form Ge quantum dots on off-axis SiC substrates. Pure SiH4 and hydrogen-diluted GeH4 were used as gas precursors. The SiC substrates were chemically cleaned using the modified RCA process and the SiO2 layer was removed in-situ under a low SiH4 flow rate at a temperature between 1030°C and 1080°C. The Ge quantum dots were grown at a temperature of 750°C. In-situ reflection high-energy electron diffraction (RHEED) was used to monitor the surface cleaning and the Ge quantum dot growth. Ex-situ scanning electron microscope and atomic force microscopy were used to confirm the presence of Ge dots. The observed dots are smaller (350 Å width and 100 Å height) than similar Ge dots grown on Si.


Author(s):  
Albert J. Bevolo

For several years our laboratory has investigated the properties of copper based alloys with transition metals such as Cu80Nb20. When heavily drawn these alloys retain the thermal conductivity of pure copper but acquire strengths usually associated with steels. Niobium dendrites, that are immiscible in the copper matrix in the as-cast form, become very fine, thermally stable filaments when heavily drawn. When heat treated in a diffusion pumped static vacuum chamber the surface unexpectedly acquires a silvery coloration rather than the reddish color expected from the dominant copper constituent. If a flow of inert gas is maintained then the surface becomes reddish. Experiments involving SAM and EDX analyses of cast alloys ex situ and in situ treated in ultra high vacuum (UHV) were performed to investigate this behavior.Auger depth profiles of the ex situ silver colored alloys showed from the Nb (167) Auger transition lineshape that the dominant phase was metallic NbO.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
J. E. O'Neal ◽  
J. J. Bellina ◽  
B. B. Rath

Thin films of the bcc metals vanadium, niobium and tantalum were epitaxially grown on (0001) and sapphire substrates. Prior to deposition, the mechanical polishing damage on the substrates was removed by an in-situ etch. The metal films were deposited by electron-beam evaporation in ultra-high vacuum. The substrates were heated by thermal contact with an electron-bombarded backing plate. The deposition parameters are summarized in Table 1.The films were replicated and examined by electron microscopy and their crystallographic orientation and texture were determined by reflection electron diffraction. Verneuil-grown and Czochralskigrown sapphire substrates of both orientations were employed for each evaporation. The orientation of the metal deposit was not affected by either increasing the density of sub-grain boundaries by about a factor of ten or decreasing the deposition rate by a factor of two. The results on growth epitaxy are summarized in Tables 2 and 3.


Sign in / Sign up

Export Citation Format

Share Document