cast alloys
Recently Published Documents


TOTAL DOCUMENTS

829
(FIVE YEARS 170)

H-INDEX

38
(FIVE YEARS 7)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 160
Author(s):  
Mahmoud Ahmed El-Sayed ◽  
Khamis Essa ◽  
Hany Hassanin

Entrapped double oxide film defects are known to be the most detrimental defects during the casting of aluminium alloys. In addition, hydrogen dissolved in the aluminium melt was suggested to pass into the defects to expand them and cause hydrogen porosity. In this work, the effect of two important casting parameters (the filtration and hydrogen content) on the properties of Al–7 Si–0.3 Mg alloy castings was studied using a full factorial design of experiments approach. Casting properties such as the Weibull modulus and position parameter of the elongation and the tensile strength were considered as response parameters. The results suggested that adopting 10 PPI filters in the gating system resulted in a considerable boost of the Weibull moduli of the tensile strength and elongation due to the enhanced mould filling conditions that minimised the possibility of oxide film entrainment. In addition, the results showed that reducing the hydrogen content in the castings samples from 0.257 to 0.132 cm3/100 g Al was associated with a noticeable decrease in the size of bifilm defects with a corresponding improvement in the mechanical properties. Such significant effect of the process parameters studied on the casting properties suggests that the more careful and quiescent mould filling practice and the lower the hydrogen level of the casting, the higher the quality and reliability of the castings produced.


2021 ◽  
Vol 413 ◽  
pp. 217-224
Author(s):  
Martin Vlach ◽  
Veronika Kodetová ◽  
Hana Kudrnová ◽  
Michal Leibner ◽  
Sebastien Zikmund ◽  
...  

The commercial Al–Zn–Mg–Cu-based alloys (7xxx series) are widely used in metalworking, automotive and aircraft industries as well as in aeronautical applications. The positive effect of the Sc,Zr-addition on mechanical properties of laboratory Al-based alloys is generally known. The microstructure, mechanical and thermal properties of the conventionally cast, heat-treated and cold-rolled Al–Zn–Mg–Cu (–Sc–Zr) alloys during isochronal annealing and natural ageing were studied. Microstructure observation by scanning electron microscopy and transmission electron microscopy proved the Zn,Mg,Cu-containing eutectic phase at grain boundaries. The distinct changes in microhardness curves as well as in a heat flow of the alloys studied are mainly caused by dissolution of the clusters/Guinier-Preston (GP) zones and precipitation of particles from the Al–Zn–Mg–Cu system. An easier diffusion of Zn, Mg and Cu atoms along dislocations in the cold-rolled alloys is responsible for the precipitation of the Zn,Mg,Cu-containing particles at lower temperatures compared to the cast alloys. Microhardness values of the heat-treated alloys increase immediately from the beginning of natural ageing due to the formation of the clusters/GP zones. Addition of Sc and Zr elements results in a higher hardness above ~ 270 °C due to a strengthening by coherent secondary Al3(Sc,Zr) particles with a good thermal stability. Sc,Zr-addition has probably no influence on the evolution of the solute clusters/GP zones.


2021 ◽  
pp. 163058
Author(s):  
Xiao-Feng Wu ◽  
Zhen-Cheng Wang ◽  
Ke-Yan Wang ◽  
Rong-Da Zhao ◽  
Fu-Fa Wu

2021 ◽  
Vol 2144 (1) ◽  
pp. 012010
Author(s):  
S V Zasypkin ◽  
A O Cheretaeva ◽  
M R Shafeev ◽  
D L Merson ◽  
M M Krishtal

Abstract The effect of heat treatment on the mechanical properties (hardness, plasticity, yield and tensile strength) and corrosion resistance of several cast magnesium alloys with additions of rare earth metals (Y, Nd and Gd), and their surface modification by plasma electrolytic oxidation (PEO) were investigated. It was found that the heat treatment of the alloys results information of Mg12YZn, Mg3Zn3Y2 and Mg24Y5 based LPSO-phases and causes an increase in hardness and tensile strength by 5-7 and 20-25%, respectively, but at the same time, corrosion resistance of the alloysdrops by 10-20 times. PEO of the alloys after heat treatment reduced the corrosion currents by 1-3 orders of magnitude without changing the corrosion potential.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012023
Author(s):  
A Skic ◽  
K Beer-Lech ◽  
M Szala ◽  
M Kamiński ◽  
Z Krzysiak ◽  
...  

Abstract The crisis related to the COVID 19 pandemic caused an increase in nickel prices on the global markets. From this perspective, it seems promising to search for the possibilities of effective recycling of nickel-based alloys as biomaterials. The topic of the recasting of Ni-Cr dental alloys is currently being broadly described in the literature. Nonetheless, there are still no conclusive results on the impact of recasting on the quality of the cast dentures. Considering the aforementioned, for research, the effect of recasting on the wear resistance and microstructure of NiCrMo dental alloy was investigated. The Heraenium NA alloy was used for testing. Abrasion resistance was tested by the ball on disc method. Microstructure and wear trace were observed using an optical microscope and a scanning electron microscope. The tests showed a higher wear resistance of the re-casted material. The average coefficient of friction for the initially cast alloys was 0.664, while for the remelted samples the mean value was 0.441. The tested samples are characterised by an abrasive-adhesive wear mechanism. Piling up of the wear tracks edges was observed – the highest for H100. For the H100 samples, a slightly lower average hardness value (HV10) was observed – 226 compared to 233 (HV10) for the samples made from the re-casted alloy (H0). The presence of a dendritic structure of alloys was demonstrated. Blocky eutectic precipitations are visible against the matrix. The observed growth of interdendritic precipitations constitute a natural barrier for the counterpart material and increases its tribological properties. Obtained results suggest that alloy recasting does not constitute a limitation to its use.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1944
Author(s):  
Jon Mikel Sanchez ◽  
Alejandro Pascual ◽  
Iban Vicario ◽  
Joseba Albizuri ◽  
Teresa Guraya ◽  
...  

In this work, three novel complex concentrated aluminum alloys were developed. To investigate the unexplored region of the multicomponent phase diagrams, thermo-physical parameters and the CALPHAD method were used to understand the phase formation of the Al80Mg5Sn5Zn5Ni5, Al80Mg5Sn5Zn5Mn5, and Al80Mg5Sn5Zn5Ti5 alloys. The ingots of the alloys were manufactured by a gravity permanent mold casting process, avoiding the use of expensive, dangerous, or scarce alloying elements. The microstructural evolution as a function of the variable element (Ni, Mn, or Ti) was studied by means of different microstructural characterization techniques. The hardness and compressive strength of the as-cast alloys at room temperature were studied and correlated with the previously characterized microstructures. All the alloys showed multiphase microstructures with major α-Al dendritic matrix reinforced with secondary phases. In terms of mechanical properties, the developed alloys exhibited a high compression yield strength up to 420 MPa, high compression fracture strength up to 563 MPa, and elongation greater than 12%.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7155
Author(s):  
Ruoqi Li ◽  
Naoki Takata ◽  
Asuka Suzuki ◽  
Makoto Kobashi ◽  
Yuji Okada ◽  
...  

The precipitation of intermetallic phases and the associated hardening by artificial aging treatments at elevated temperatures above 400 °C were systematically investigated in the commercially available AC2B alloy with a nominal composition of Al–6Si–3Cu (mass%). The natural age hardening of the artificially aged samples at various temperatures was also examined. A slight increase in hardness (approximately 5 HV) of the AC2B alloy was observed at an elevated temperature of 480 °C. The hardness change is attributed to the precipitation of metastable phases associated with the α-Al15(Fe, Mn)3Si2 phase containing a large amount of impurity elements (Fe and Mn). At a lower temperature of 400 °C, a slight artificial-age hardening appeared. Subsequently, the hardness decreased moderately. This phenomenon was attributed to the precipitation of stable θ-Al2Cu and Q-Al4Cu2Mg8Si6 phases and their coarsening after a long duration. The precipitation sequence was rationalized by thermodynamic calculations for the Al–Si–Cu–Fe–Mn–Mg system. The natural age-hardening behavior significantly varied depending on the prior artificial aging temperatures ranging from 400 °C to 500 °C. The natural age-hardening was found to strongly depend on the solute contents of Cu and Si in the Al matrix. This study provides fundamental insights into controlling the strength level of commercial Al–Si–Cu cast alloys with impurity elements using the cooling process after solution treatment at elevated temperatures above 400 °C.


Author(s):  
E. A. Elsharkawi ◽  
M. F. Ibrahim ◽  
A. M. Samuel ◽  
H. W. Doty ◽  
F. H. Samuel

Sign in / Sign up

Export Citation Format

Share Document