scholarly journals The Effect of Heavy-Duty Vehicle Crossings on the State of Stress of Buried Pipelines

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 153
Author(s):  
Ľubomír Gajdoš ◽  
Martin Šperl ◽  
Jan Kec ◽  
Petr Crha

The aim of this article is to quantify the loads exerted by heavy-duty vehicles when crossing over buried pipeline. This problem arises in connection to the question pertaining to the use of protective sleeves (casings) applied to gas pipelines in regions with increased demands on pipeline operation safety. An experiment was conducted on a test pipe section made from L360NE pipeline steel equipped with strain gauges along the pipe perimeter, measuring strains in the axial and circumferential directions. Strain measurements were taken after back-filling the pipe trench, then during vehicle crossings over the empty pipe, and again after pressurizing the test pipe with air. Strain-based hoop stresses at the surface of the empty test pipe were found to exceed 30 MPa after back-filling the trench and increased to more than 40 MPa during the vehicle crossings. Similarly, axial stresses reached extremes of around 17 MPa in compression and 12 MPa in tension. Applying internal air pressure to the test pipe resulted in a reduced net effect on both the hoop and axial stresses.

Empirica ◽  
2012 ◽  
Vol 39 (2) ◽  
pp. 261-278 ◽  
Author(s):  
Karl W. Steininger ◽  
Christoph Schmid ◽  
Alexandra Tobin

2021 ◽  
Vol 94 ◽  
pp. 102784
Author(s):  
Nikiforos Zacharof ◽  
Georgios Fontaras ◽  
Biagio Ciuffo ◽  
Alessandro Tansini ◽  
Iker Prado-Rujas

2016 ◽  
Vol 17 (4) ◽  
pp. 1051-1061 ◽  
Author(s):  
Kuo-Yun Liang ◽  
Jonas Martensson ◽  
Karl H. Johansson

Author(s):  
Nikhil Joshi ◽  
Pritha Ghosh ◽  
Jonathan Brewer ◽  
Lawrence Matta

Abstract API RP 1102 provides a method to calculate stresses in buried pipelines due to surface loads resulting from the encroachment of roads and railroads. The API RP 1102 approach is commonly used in the industry, and widely available software allows for quick and easy implementation. However, the approach has several limitations on when it can be used, one of which is that it is limited to pipelines crossing as near to 90° (perpendicular crossing) as practicable. In no case can the crossing be less than 30° . In this paper, the stresses in the buried pipeline under standard highway vehicular loading calculated using the API RP 1102 method are compared with the results of two other methods; an analytical method that accounts for longitudinal and circumferential through wall bending effects, and the finite element method. The benefit of the alternate analytical method is that it is not subject to the limitations of API RP 1102 on crossing alignment or depth. However, this method is still subject to the limitation that the pipeline is straight and at a uniform depth. The fact that it is analytical in nature allows for rapid assessment of a number of pipes and load configurations. The finite element analysis using a 3D soil box approach offers the greatest flexibility in that pipes with bends or appurtenances can be assessed. However, this approach is time consuming and difficult to apply to multiple loading scenarios. Pipeline crossings between 0° (parallel) and 90° (perpendicular) are evaluated in the assessment reported here, even though these are beyond the scope of API RP 1102. A comparison across the three methods will provide a means to evaluate the level of conservatism, if any, in the API RP 1102 calculation for crossing between 30° and 90° . It also provides a rationale to evaluate whether the API RP 1102 calculation can potentially be extended for 0° (parallel) crossings.


2021 ◽  
Author(s):  
Guohui Zhu ◽  
Dan Zhen ◽  
Wei Chen ◽  
Qingsong Zuo ◽  
Mingchang Zhao ◽  
...  

2021 ◽  
Author(s):  
Evan Pelletier ◽  
Wushuang Bai ◽  
Miguel Alvarez Tiburcio ◽  
John Borek ◽  
Stephen Boyle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document