scholarly journals Investigation of AlCrN-Coated Inserts on Cryogenic Turning of Ti-6Al-4V Alloy

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.

2020 ◽  
Vol 65 (1) ◽  
pp. 10-26
Author(s):  
Septi Boucherit ◽  
Sofiane Berkani ◽  
Mohamed Athmane Yallese ◽  
Riad Khettabi ◽  
Tarek Mabrouki

In the current paper, cutting parameters during turning of AISI 304 Austenitic Stainless Steel are studied and optimized using Response Surface Methodology (RSM) and the desirability approach. The cutting tool inserts used in this work were the CVD coated carbide. The cutting speed (vc), the feed rate (f) and the depth of cut (ap) were the main machining parameters considered in this study. The effects of these parameters on the surface roughness (Ra), cutting force (Fc), the specific cutting force (Kc), cutting power (Pc) and the Material Removal Rate (MRR) were analyzed by ANOVA analysis.The results showed that f is the most important parameter that influences Ra with a contribution of 89.69 %, while ap was identified as the most significant parameter (46.46%) influence the Fc followed by f (39.04%). Kc is more influenced by f (38.47%) followed by ap (16.43%) and Vc (7.89%). However, Pc is more influenced by Vc (39.32%) followed by ap (27.50%) and f (23.18%).The Quadratic mathematical models, obtained by the RSM, presenting the evolution of Ra, Fc, Kc and Pc based on (vc, f, and ap) were presented. A comparison between experimental and predicted values presents good agreements with the models found.Optimization of the machining parameters to achieve the maximum MRR and better Ra was carried out by a desirability function. The results showed that the optimal parameters for maximal MRR and best Ra were found as (vc = 350 m/min, f = 0.088 mm/rev, and ap = 0.9 mm).


2011 ◽  
Vol 189-193 ◽  
pp. 3142-3147 ◽  
Author(s):  
Dong Qiang Gao ◽  
Zhong Yan Li ◽  
Zhi Yun Mao

A model of stress and temperature field is established on nickel-based alloy cutting by finite element modeling and dynamic numerical simulating, and then combining high-speed machining test and orthogonality analysis method, the influence law of cutting parameters on the cutting force and tool wear has been researched, and the tool life and cutting force prediction model based on cutting parameters has been obtained. Finally, by genetic algorithm method cutting parameters are selected reasonably and optimized. The result shows that the bonding wear is main tool wear, and the influence of cutting speed on cutting force is smaller than feed per tooth and axial depth of cut.


2009 ◽  
Vol 83-86 ◽  
pp. 56-66 ◽  
Author(s):  
Mohd Amri Lajis ◽  
A.K.M. Nurul Amin ◽  
A.N. Mustafizul Karim ◽  
A.M.K. Hafiz

This study was conducted to investigate the effect of preheating through inductive heating mechanism in end milling of AISI D2 hardened steel (60-62 HRC) by using coated carbide tool inserts. Apart from preheating, two other machining parameters such as cutting speed and feed were varied while the depth of cut constant was kept constant. Tool wear phenomenon and machined surface finish were found to be significantly affected by preheating temperature and other two variables. End milling operation was performed on a Vertical Machining Centre (VMC). Preheating of the work material to a higher temperature range resulted in a noticeable reduction in tool wear rate leading to a longer tool life. In addition, improved surface finish was obtained with surface roughness values lower than 0.4 μm, leaving a possibility of skipping the grinding and polishing operations for certain applications.


2017 ◽  
Vol 6 (4) ◽  
pp. 327-333
Author(s):  
Erry Yulian T. Adesta ◽  
Muhammad Riza ◽  
Avicenna Avicenna

Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.


2017 ◽  
Vol 867 ◽  
pp. 119-126
Author(s):  
S. Muthusamy ◽  
A Arulmurugu

In modern years, simulating metal cutting process used in Finite element method (FEM). The cutting force is used to identify the excessive friction of machining interface and worn out tool. Optimization of machining parameters are used to maintain the precision of the component, power consumption minimized and tool wear reduced. The current project presents the simulated Finite Element SPH Model used for predict the cutting force and associate with experimental confirmation while turning the AA2219-TiB2/ZrB2 metal matrix composites (MMC). Smooth Particle Hydrodynamics (SPH) machining simulation was carried out using a Lagrangian finite element based machining model to predict the cutting force. The turning simulation operation carried out using ANSYS AUTODYN (SPH) software. Machining parameters are cutting speed, feed rate and depth of cut. The results predicted from the SPH analysis virtually close to the results attained from the experimental work. Simulation of machining test using SPH model is preferred over actual cutting test because of it reduce cost and time.


Mechanika ◽  
2019 ◽  
Vol 25 (6) ◽  
pp. 487-500
Author(s):  
Septi Boucherit ◽  
Sofiane Berkani ◽  
Mohamed Athmane Yallese ◽  
Abdelkrim Haddad ◽  
Salim Belhadi

The present paper investigates the cutting parameters pertaining to the turning of X2CrNi18-09 austenitic stainless steel that are studied and optimized using both RSM and desirability approaches. The cutting tool inserts used are the CVD coated carbide. The cutting speed, the feed rate and the depth of cut represent the main machining parameters considered. Their influence on the surface roughness and the cutting force are further investigated using the ANOVA method. The results obtained lead to conclude that the feed rate is the surface roughness highest influencing parameter with a contribution of 89.69%.The depth of cut and the feed rate are further identified as the most important parameters affecting the cutting force with contributions of 46.46% and 39.04% respectively. The quadratic mathematical models presenting the progression of the surface roughness and the cutting force and based on the machining parameters considered (cutting speed, feed rate and depth of cut) were obtained through the application of the RSM method. They are presented and compared to the experimental results. Good agreement is found between the two sections of the investigation. Furthermore, the flank wear of the CVD-coated carbide tool (GC2015) is found to increase with both cutting speed and cutting time. A higher tool life represented by t=44min is observed at cutting speed, feed rate and depth of cut of 280m/min,0.08mm/rev and 0.2mm respectively. Moreover and at low cutting speeds, the formation of micro weld is noticed and leads to an alteration of the surface roughness of the work piece. Finally, optimizing the machining parameters with the objective of achieving an improved surface roughness was accomplished through the application of the Desirability Function approach. This enabled to finding out the optimal parameters for maximal material removal rate and best surface quality for a cutting speed of 350m/min, a feed rate of 0.088 mm/rev and a depth of cut of 0.9mm.  


Author(s):  
Rajesh Kumar Bhushan

Optimization in turning means determination of the optimal set of the machining parameters to satisfy the objectives within the operational constraints. These objectives may be the minimum tool wear, the maximum metal removal rate (MRR), or any weighted combination of both. The main machining parameters which are considered as variables of the optimization are the cutting speed, feed rate, depth of cut, and nose radius. The optimum set of these four input parameters is determined for a particular job-tool combination of 7075Al alloy-15 wt. % SiC (20–40 μm) composite and tungsten carbide tool during a single-pass turning which minimizes the tool wear and maximizes the metal removal rate. The regression models, developed for the minimum tool wear and the maximum MRR were used for finding the multiresponse optimization solutions. To obtain a trade-off between the tool wear and MRR the, a method for simultaneous optimization of the multiple responses based on an overall desirability function was used. The research deals with the optimization of multiple surface roughness parameters along with MRR in search of an optimal parametric combination (favorable process environment) capable of producing desired surface quality of the turned product in a relatively lesser time (enhancement in productivity). The multi-objective optimization resulted in a cutting speed of 210 m/min, a feed of 0.16 mm/rev, a depth of cut of 0.42 mm, and a nose radius of 0.40 mm. These machining conditions are expected to respond with the minimum tool wear and maximum the MRR, which correspond to a satisfactory overall desirability.


2017 ◽  
Vol 867 ◽  
pp. 165-170
Author(s):  
Isha Srivastava ◽  
Ajay Batish

The aim of this study were to evaluate the performance of PVD (TiAlN+TiN) and CVD (TiCN+Al2O3+TiN) coated inserts in end milling of EN–31 hardened die steel of 43±1 HRC during dry and MQL (Minimum quantity lubrication) machining. The experiments were conducted at a fixed feed rate, depth of cut and varying cutting speed to measure the effect of cutting speed on cutting force and tool wear of CVD and PVD-coated inserts. The performance of CVD and PVD-coated inserts under dry and MQL condition by measuring the tool wear and cutting force were compared. During cutting operation, it was noticed that PVD inserts provide less cutting force and tool wear as compared to the CVD inserts under both dry as well as the MQL condition because PVD inserts have a thin insert coating and CVD inserts have a thick insert coating, but PVD inserts experience catastrophic failure during cutting operation whereas CVD inserts have a capability for continuous machining under different machining. Tool wear has measured by SEM analysis. The result shows that MQL machining provides the optimum results as compared to the dry condition. MQL machining has the ability to work under high cutting speed. As the cutting speed increases the performance of dry machining was decreased, but in MQL machining, the performance of the inserts was increased with increases of cutting speed. MQL machining generates less cutting force on the cutting zone and reduces the tool wear which further increase the tool life.


2010 ◽  
Vol 447-448 ◽  
pp. 816-820 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Hiroyuki Sasahara

Surface integrity is particularly important for the aerospace industry components in order to permit longer service life and maximized its reliability. This present work compares the performance of palm oil and synthetic ester on surface roughness, surface defect, microhardness and subsurface deformation when high speed drilling of Ti-6Al-4V under MQL condition. The drilling tests were conducted with AlTiN coated carbide tool. The surface roughness decreased with increasing in cutting speed and thicker subsurface deformation was formed underneath the machined surface. Grooves, cavities, pit holes, microcracks and material smearing were the dominant surface damages thus deteriorated the machined surface. For both lubricants, the machined surface experienced from thermal softening and work hardening effect thus gave a variation in microhardness values. The results indicated the substantial benefit of MQL by palm oil on surface integrity.


Author(s):  
Rusdi Nur ◽  
MY Noordin ◽  
S Izman ◽  
D Kurniawan

Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.


Sign in / Sign up

Export Citation Format

Share Document