scholarly journals Organs-on-a-Chip Module: A Review from the Development and Applications Perspective

Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 536 ◽  
Author(s):  
Juan Eduardo Sosa-Hernández ◽  
Angel M. Villalba-Rodríguez ◽  
Kenya D. Romero-Castillo ◽  
Mauricio A. Aguilar-Aguila-Isaías ◽  
Isaac E. García-Reyes ◽  
...  

In recent years, ever-increasing scientific knowledge and modern high-tech advancements in micro- and nano-scales fabrication technologies have impacted significantly on various scientific fields. A micro-level approach so-called “microfluidic technology” has rapidly evolved as a powerful tool for numerous applications with special reference to bioengineering and biomedical engineering research. Therefore, a transformative effect has been felt, for instance, in biological sample handling, analyte sensing cell-based assay, tissue engineering, molecular diagnostics, and drug screening, etc. Besides such huge multi-functional potentialities, microfluidic technology also offers the opportunity to mimic different organs to address the complexity of animal-based testing models effectively. The combination of fluid physics along with three-dimensional (3-D) cell compartmentalization has sustained popularity as organ-on-a-chip. In this context, simple humanoid model systems which are important for a wide range of research fields rely on the development of a microfluidic system. The basic idea is to provide an artificial testing subject that resembles the human body in every aspect. For instance, drug testing in the pharma industry is crucial to assure proper function. Development of microfluidic-based technology bridges the gap between in vitro and in vivo models offering new approaches to research in medicine, biology, and pharmacology, among others. This is also because microfluidic-based 3-D niche has enormous potential to accommodate cells/tissues to create a physiologically relevant environment, thus, bridge/fill in the gap between extensively studied animal models and human-based clinical trials. This review highlights principles, fabrication techniques, and recent progress of organs-on-chip research. Herein, we also point out some opportunities for microfluidic technology in the future research which is still infancy to accurately design, address and mimic the in vivo niche.

2014 ◽  
Vol 2014 ◽  
pp. 1-32 ◽  
Author(s):  
Shamkant B. Badgujar ◽  
Vainav V. Patel ◽  
Atmaram H. Bandivdekar

Foeniculum vulgareMill commonly called fennel has been used in traditional medicine for a wide range of ailments related to digestive, endocrine, reproductive, and respiratory systems. Additionally, it is also used as a galactagogue agent for lactating mothers. The review aims to gather the fragmented information available in the literature regarding morphology, ethnomedicinal applications, phytochemistry, pharmacology, and toxicology ofFoeniculum vulgare. It also compiles available scientific evidence for the ethnobotanical claims and to identify gaps required to be filled by future research. Findings based on their traditional uses and scientific evaluation indicates thatFoeniculum vulgareremains to be the most widely used herbal plant. It has been used for more than forty types of disorders. Phytochemical studies have shown the presence of numerous valuable compounds, such as volatile compounds, flavonoids, phenolic compounds, fatty acids, and amino acids. Compiled data indicate their efficacy in severalin vitroandin vivopharmacological properties such as antimicrobial, antiviral, anti-inflammatory, antimutagenic, antinociceptive, antipyretic, antispasmodic, antithrombotic, apoptotic, cardiovascular, chemomodulatory, antitumor, hepatoprotective, hypoglycemic, hypolipidemic, and memory enhancing property.Foeniculum vulgarehas emerged as a good source of traditional medicine and it provides a noteworthy basis in pharmaceutical biology for the development/formulation of new drugs and future clinical uses.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Patrizia Camelliti ◽  
Gil Bub ◽  
Daniel J Stuckey ◽  
Christian Bollensdorff ◽  
Damian J Tyler ◽  
...  

Sarcomere length (SL) is a fundamental parameter underlying the Frank Starling relation in the heart, as it offers an absolute representation of myocardial stretch. Previous studies addressed the Frank Starling relation by measuring SL in isolated myocytes or muscle strips. Here, we report first data obtained using a novel technique to measure sub-epicardial SL in perfused hearts. Rat hearts were Langendorff perfused (normal Tyrode solution) at a constant pressure of 90mmHg, labeled with the fluorescent membrane marker di-4-ANEPPS, and then arrested with high-K + Tyrode for either 2-photon microscopy (n=4) or MRI (n=4). Image analysis software was developed to extract SL at the cell level from >1,400 2-photon images (Fig 1 ) and correct for cell angle. SL increased by 10±2 % between 30 and 80 min of perfusion (1.98±0.04 to 2.17±0.03 μm; p<0.05; Fig 1 ). Measurements of left ventricular myocardial volume (LVMV) were made in vivo and in perfused hearts using 3D MRI. LVMV increased by 24±7% from in vivo to 30 min of perfusion, and by 11±3 % between 30 and 90 min (539±35; 664±44; 737±49 mm 3 , respectively; p<0.05; Fig 1 ). We show that SL can be measured in isolated perfused hearts. The method allowed monitoring of changes in SL over time, and showed that SL and LVMV increase to a similar extent during 30–80 min perfusion with crystalloid solution, probably due to tissue oedema. This result, together with the increase in LVMV during the first 30 min, highlights the pronounced differences between in vivo , in situ , and in vitro model systems for studies of cardiac physiology and mechanics. Future research will compare changes in SL in healthy hearts and disease models involving contractile dysfunction. Figure 1: Left: 2-photon microscopy image of di-4-ANEPPS labeled myocardium. Right: SL and LVMV changes over time.


Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 46 ◽  
Author(s):  
Ishtiaq Ahmed ◽  
Zain Akram ◽  
Mohammed Bule ◽  
Hafiz Iqbal

A micro-level technique so-called “microfluidic technology or simply microfluidic” has gained a special place as a powerful tool in bioengineering and biomedical engineering research due to its core advantages in modern science and engineering. Microfluidic technology has played a substantial role in numerous applications with special reference to bioscience, biomedical and biotechnological research. It has facilitated noteworthy development in various sectors of bio-research and upsurges the efficacy of research at the molecular level, in recent years. Microfluidic technology can manipulate sample volumes with precise control outside cellular microenvironment, at micro-level. Thus, enable the reduction of discrepancies between in vivo and in vitro environments and reduce the overall reaction time and cost. In this review, we discuss various integrations of microfluidic technologies into biotechnology and its paradigmatic significance in bio-research, supporting mechanical and chemical in vitro cellular microenvironment. Furthermore, specific innovations related to the application of microfluidics to advance microbial life, solitary and co-cultures along with a multiple-type cell culturing, cellular communications, cellular interactions, and population dynamics are also discussed.


2021 ◽  
pp. 43-62
Author(s):  
Britney He

One of the largest hurdles to the efficacy of cancer therapeutics, and a main cause of relapse, is therapy resistance. In response, researchers have developed model systems to better understand therapy resistance. Cancer research employs several model systems that reflect the biology of actual human tumors: in vitro models (2D, 3D cell cultures), in vivo models (PDX, GEMMS, transgenic), proteomic models, and computational or mathematical models. One cancer that has been extensively modeled is pancreatic ductal adenocarcinoma (PDAC). PDAC is the third most common cause of annual cancer deaths in developed countries; as its incidence and mortality rates continue to increase, PDAC is projected to be the second leading cause of cancer deaths by 2030. Although chemotherapy is a pillar of clinical PDAC treatment, its outcome typically leads to multi-drug resistance, drastically restricting the curative effect of drugs for a variety of tumors. Elucidating the underlying mechanisms for resistance through different models is essential for the development of new strategies and therapies. This review provides insight into the range of in vitro and in vivo models of pancreatic cancer used in preclinical research. This paper provides an overview of platforms for cancer research with a focus on those devoted to resistance mechanisms in PDAC and to the primary therapeutic intervention for PDAC, gemcitabine (GEM).


2021 ◽  
Author(s):  
Natalia Bezdieniezhnykh ◽  
Alexandra Lykhova ◽  
Tamara Kozak ◽  
Taras Zadvornyi ◽  
Olena Voronina ◽  
...  

Abstract Background: The assessment of biosafety of pharmacologically active substances is crucial for determining the feasibility of their medical use. There are controversial issues regarding the use of substances of different origins as implants. Methods: We have conducted the comprehensive studies to determine the in vivo toxicity and in vitro genotoxicity of new generation of hydrophilic gel for implantation (production name of the substance "Activegel") to detail its characteristics and assess its biosafety. Results: In vivo studies have shown the absence of clinical manifestations of intoxication in animals and no abnormalities in their physiological condition, general and biochemical blood tests. Evaluation of the site of the gel application showed no inflammatory reaction and evidenced on normal state of tissues of animal skin. The results of the genotoxicity test indicated that the gel did not affect the parameters of DNA comets and, accordingly, had no genotoxic effect on human peripheral blood lymphocytes. When studying the effect of the gel on malignantly transformed cells in vitro, it was found that the gel for implantation did not change the proliferative activity and viability of human breast cancer cells. Conclusions: Comprehensive in vitro and in vivo study using various experimental model systems showed that the hydrophilic gel for implantation "Activegel" is non-toxic.


Neurology ◽  
2018 ◽  
Vol 91 (2 Supplement 1) ◽  
pp. S14-S20 ◽  
Author(s):  
Jean-Philippe Brosseau ◽  
Dominique C. Pichard ◽  
Eric H. Legius ◽  
Pierre Wolkenstein ◽  
Robert M. Lavker ◽  
...  

ObjectiveA group of experts in dermatology, genetics, neuroscience, and regenerative medicine collaborated to summarize current knowledge on the defined factors contributing to cutaneous neurofibroma (cNF) development and to provide consensus recommendations for future research priorities to gain an improved understanding of the biology of cNF.MethodsThe group members reviewed published and unpublished data on cNF and related diseases via literature search, defined a set of key topic areas deemed critical in cNF pathogenesis, and developed recommendations in a series of consensus meetings.ResultsFive specific topic areas were identified as being relevant to providing an enhanced understanding of the biology of cNF: (1) defining the human cells of origin; (2) understanding the role of the microenvironment, focusing on neurons, mast cells, and fibroblasts; (3) defining the genetic and molecular differences between the cNFs, focusing on size and number; (4) understanding if sex hormones are critical for cNF development or progression; and (5) identifying challenges in establishing in vitro and in vivo models representing human cNF.ConclusionsThe complexity of cNF biology stems from its heterogeneity at multiple levels including genetic, spatial involvement, temporal development, and cellular composition. We propose a unified working model for cNF that builds a framework to address the key questions about cNF that, when answered, will provide the necessary understanding of cNF biology to allow meaningful development of therapies.


TECHNOLOGY ◽  
2016 ◽  
Vol 04 (04) ◽  
pp. 240-248 ◽  
Author(s):  
Sangcheol Na ◽  
Myeongwoo Kang ◽  
Seokyoung Bang ◽  
Daehun Park ◽  
Jinhyun Kim ◽  
...  

Neural circuits, groups of neurons connected in directional manner, play a central role in information processing. Advances in neuronal biology research is limited by a lack of appropriate in vitro methods to construct and probe neuronal networks. Here, we describe a microfluidic culture platform that directs the growth of axons using “neural diode” structures to control neural connectivity. This platform is compatible with live cell imaging and can be used to (i) form pre-synaptic and postsynaptic neurons by directional axon growth and (ii) localize physical and chemical treatment to pre- or postsynaptic neuron groups (i.e. virus infection and etc.). The “neural diode” design consist of a microchannel that split into two branches: one is directed straight toward while the other returns back toward the starting point in a closed loop to send the axons back to the origin. We optimized the “neural diode” pattern dimension and design to achieve close to 70% directionality with a single unit of the “diode”. When repeated 3 times, near perfect (98–100% at wide range of cell concentrations) directionality can be achieved. The living neural circuit was characterized using Ca imaging and confirmed their function. The platform also serves as a straightforward, reproducible method to recapitulate a variety of neural circuit in vitro that were previously observable only in brain slice or in vivo models. The microfluidic neural diode may lead to better models for understanding the neural circuit and neurodegenerative diseases.


Author(s):  
Yoko Ambrosini ◽  
Dana Borcherding ◽  
Anumantha Kanthasamy ◽  
Hyun Jung Kim ◽  
Albert Jergens ◽  
...  

Identifying appropriate animal models is critical in developing translatable in vitro and in vivo systems for therapeutic development and investigating disease pathophysiology. These animal models should have direct biological and translational relevance to the underlying disease they are supposed to mimic. Aging dogs naturally develop a cognitive decline in many aspects including learning and memory, but also exhibit human-like individual variability in the aging process. Neurodegenerative processes that can be observed in both human and canine brains include the progressive accumulation of &beta;-amyloid (A&beta;) found as diffuse plaques in the prefrontal cortex, including the gyrus proreus, the hippocampus, and in the cerebral vasculature. A growing body of epidemiological data shows that human patients with neurodegenerative diseases have concurrent intestinal lesions, and histopathological changes in the gastrointestinal (GI) tract occurs decades that evolve before neurodegenerative changes. Gut microbiome alterations also have been observed in many neurodegenerative diseases including Alzheimer&rsquo;s and Parkinson&rsquo;s diseases, and inflammatory CNS diseases. Interestingly, only recently has the dog gut microbiome been recognized to more closely resemble in composition and in functional overlap with the human gut microbiome as compared to rodent models. This article aims to review the physiology of the gut-brain axis (GBA), and its involvement with neurodegenerative diseases in dogs and humans. Additionally, we outline the advantages and disadvantages of traditional in vitro and in vivo models and discuss future research directions investigating major human neurodegenerative diseases such as Alzheimer&rsquo;s and Parkinson&rsquo;s diseases using dogs.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Pang Yuk Cheung ◽  
Patrick T. Harrison ◽  
Alan J. Davidson ◽  
Jennifer A. Hollywood

The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations.


2018 ◽  
Vol 243 (6) ◽  
pp. 576-585 ◽  
Author(s):  
ML Martinez-Fierro ◽  
GP Hernández-Delgadillo ◽  
V Flores-Morales ◽  
E Cardenas-Vargas ◽  
M Mercado-Reyes ◽  
...  

Preeclampsia (PE) is a pregnancy complex disease, distinguished by high blood pressure and proteinuria, diagnosed after the 20th gestation week. Depending on the values of blood pressure, urine protein concentrations, symptomatology, and onset of disease there is a wide range of phenotypes, from mild forms developing predominantly at the end of pregnancy to severe forms developing in the early stage of pregnancy. In the worst cases severe forms of PE could lead to systemic endothelial dysfunction, eclampsia, and maternal and/or fetal death. Worldwide the fetal morbidity and mortality related to PE is calculated to be around 8% of the total pregnancies. PE still being an enigma regarding its etiology and pathophysiology, in general a deficient trophoblast invasion during placentation at first stage of pregnancy, in combination with maternal conditions are accepted as a cause of endothelial dysfunction, inflammatory alterations and appearance of symptoms. Depending on the PE multifactorial origin, several in vitro, in vivo, and in silico models have been used to evaluate the PE pathophysiology as well as to identify or test biomarkers predicting, diagnosing or prognosing the syndrome. This review focuses on the most common models used for the study of PE, including those related to placental development, abnormal trophoblast invasion, uteroplacental ischemia, angiogenesis, oxygen deregulation, and immune response to maternal–fetal interactions. The advances in mathematical and computational modeling of metabolic network behavior, gene prioritization, the protein–protein interaction network, the genetics of PE, and the PE prediction/classification are discussed. Finally, the potential of these models to enable understanding of PE pathogenesis and to evaluate new preventative and therapeutic approaches in the management of PE are also highlighted. Impact statement This review is important to the field of preeclampsia (PE), because it provides a description of the principal in vitro, in vivo, and in silico models developed for the study of its principal aspects, and to test emerging therapies or biomarkers predicting the syndrome before their evaluation in clinical trials. Despite the current advance, the field still lacking of new methods and original modeling approaches that leads to new knowledge about pathophysiology. The part of in silico models described in this review has not been considered in the previous reports.


Sign in / Sign up

Export Citation Format

Share Document