scholarly journals Changes of the Proteome and Acetylome during Transition into the Stationary Phase in the Organohalide-Respiring Dehalococcoides mccartyi Strain CBDB1

2021 ◽  
Vol 9 (2) ◽  
pp. 365
Author(s):  
Franziska Greiner-Haas ◽  
Martin von Bergen ◽  
Gary Sawers ◽  
Ute Lechner ◽  
Dominique Türkowsky

The strictly anaerobic bactGIerium Dehalococcoides mccartyi obligatorily depends on organohalide respiration for energy conservation and growth. The bacterium also plays an important role in bioremediation. Since there is no guarantee of a continuous supply of halogenated substrates in its natural environment, the question arises of how D. mccartyi maintains the synthesis and activity of dehalogenating enzymes under these conditions. Acetylation is a means by which energy-restricted microorganisms can modulate and maintain protein levels and their functionality. Here, we analyzed the proteome and Nε-lysine acetylome of D. mccartyi strain CBDB1 during growth with 1,2,3-trichlorobenzene as an electron acceptor. The high abundance of the membrane-localized organohalide respiration complex, consisting of the reductive dehalogenases CbrA and CbdbA80, the uptake hydrogenase HupLS, and the organohalide respiration-associated molybdoenzyme OmeA, was shown throughout growth. In addition, the number of acetylated proteins increased from 5% to 11% during the transition from the exponential to the stationary phase. Acetylation of the key proteins of central acetate metabolism and of CbrA, CbdbA80, and TatA, a component of the twin-arginine translocation machinery, suggests that acetylation might contribute to maintenance of the organohalide-respiring capacity of the bacterium during the stationary phase, thus providing a means of ensuring membrane protein integrity and a proton gradient.

2014 ◽  
Vol 81 (2) ◽  
pp. 587-596 ◽  
Author(s):  
Marlén Pöritz ◽  
Christian L. Schiffmann ◽  
Gerd Hause ◽  
Ulrike Heinemann ◽  
Jana Seifert ◽  
...  

ABSTRACTPolyhalogenated aromatic compounds are harmful environmental contaminants and tend to persist in anoxic soils and sediments.Dehalococcoides mccartyistrain DCMB5, a strain originating from dioxin-polluted river sediment, was examined for its capacity to dehalogenate diverse chloroaromatic compounds. Strain DCMB5 used hexachlorobenzenes, pentachlorobenzenes, all three tetrachlorobenzenes, and 1,2,3-trichlorobenzene as well as 1,2,3,4-tetra- and 1,2,4-trichlorodibenzo-p-dioxin as electron acceptors for organohalide respiration. In addition, 1,2,3-trichlorodibenzo-p-dioxin and 1,3-, 1,2-, and 1,4-dichlorodibenzo-p-dioxin were dechlorinated, the latter to the nonchlorinated congener with a remarkably short lag phase of 1 to 4 days following transfer. Strain DCMB5 also dechlorinated pentachlorophenol and almost all tetra- and trichlorophenols. Tetrachloroethene was dechlorinated to trichloroethene and served as an electron acceptor for growth. To relate selected dechlorination activities to the expression of specific reductive dehalogenase genes, the proteomes of 1,2,3-trichlorobenzene-, pentachlorobenzene-, and tetrachloroethene-dechlorinating cultures were analyzed. Dcmb_86, an ortholog of the chlorobenzene reductive dehalogenase CbrA, was the most abundant reductive dehalogenase during growth with each electron acceptor, suggesting its pivotal role in organohalide respiration of strain DCMB5. Dcmb_1041 was specifically induced, however, by both chlorobenzenes, whereas 3 putative reductive dehalogenases, Dcmb_1434, Dcmb_1339, and Dcmb_1383, were detected only in tetrachloroethene-grown cells. The proteomes also harbored a type IV pilus protein and the components for its assembly, disassembly, and secretion. In addition, transmission electron microscopy of DCMB5 revealed an irregular mode of cell division as well as the presence of pili, indicating that pilus formation is a feature ofD. mccartyiduring organohalide respiration.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng-Wen He ◽  
Xue-Fei Cui ◽  
Shao-Jie Ma ◽  
Qin Xu ◽  
Yan-Peng Ran ◽  
...  

Abstract Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8.


2009 ◽  
Vol 70 (3) ◽  
pp. 575-585 ◽  
Author(s):  
Sander A.B. Weelink ◽  
Wim van Doesburg ◽  
Flávia Talarico Saia ◽  
W. Irene C. Rijpstra ◽  
Wilfred F.M. Röling ◽  
...  

2008 ◽  
Vol 74 (15) ◽  
pp. 4847-4852 ◽  
Author(s):  
Anastasia Matthies ◽  
Thomas Clavel ◽  
Michael Gütschow ◽  
Wolfram Engst ◽  
Dirk Haller ◽  
...  

ABSTRACT The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.


2004 ◽  
Vol 70 (5) ◽  
pp. 2748-2755 ◽  
Author(s):  
M. Graça Silveira ◽  
Maja Baumgärtner ◽  
Frank M. Rombouts ◽  
Tjakko Abee

ABSTRACT The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol for 1 h and those of cells grown in the presence of 8% ethanol. Levels of inosine-5′-monophosphate dehydrogenase and phosphogluconate dehydrogenase, which generate reduced nicotinamide nucleotides, were decreased during growth in the presence of ethanol, while glutathione reductase, which consumes NADPH, was induced, suggesting that maintenance of the redox balance plays an important role in ethanol adaptation. Phosphoenolpyruvate:mannose phosphotransferase system (PTS) components of mannose PTS, including the phosphocarrier protein HPr and EIIMan, were lacking in ethanol-adapted cells, providing strong evidence that mannose PTS is absent in ethanol-adapted cells, and this represents a metabolic advantage to O. oeni cells during malolactic fermentation. In cells grown in the presence of ethanol, a large increase in the number of membrane-associated proteins was observed. Interestingly, two of these proteins, dTDT-glucose-4,6-dehydratase and d-alanine:d-alanine ligase, are known to be involved in cell wall biosynthesis. Using a proteomic approach, we provide evidence for an active ethanol adaptation response of O. oeni at the cytoplasmic and membrane protein levels.


1962 ◽  
Vol 8 (5) ◽  
pp. 655-661 ◽  
Author(s):  
I. L. Stevenson

Changes in macromolecular levels (RNA, DNA, protein) have been followed during the growth cycle of A. globiformis. When a stationary phase culture is transferred to fresh medium a 12-fold increase in RNA level and 6-fold increases in DNA and protein levels are observed during the predivisional lag phase. Initially RNA synthesis precedes DNA and protein synthesis but all reach the same differential rate 2 to 3 hours prior to division. During the predivisional lag period the RNA/protein ratio per cell expands from 0.19 to 0.36. Once division occurs, cells of A. globiformis remain in the enlarged pleomorphic form until the medium becomes limiting; at this time synthesis of macromolecules ceases and the continued division (three to four generations) results in progressively smaller cells until the coccoid stationary phase cell-type is reached.


2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Jie Liu ◽  
Lorenz Adrian ◽  
Max M. Häggblom

ABSTRACT Organohalide respiration is an important process in the global halogen cycle and for bioremediation. In this study, we compared the global transcriptomic and proteomic analyses of Desulfoluna spongiiphila strain AA1, an organohalide-respiring member of the Desulfobacterota isolated from a marine sponge, with 2,6-dibromophenol or with sulfate as an electron acceptor. The most significant difference of the transcriptomic analysis was the expression of one reductive dehalogenase gene cluster (rdh16), which was significantly upregulated with the addition of 2,6-dibromophenol. The corresponding protein, reductive dehalogenase RdhA16032, was detected in the proteome under treatment with 2,6-dibromophenol but not with sulfate only. There was no significant difference in corrinoid biosynthesis gene expression levels between the two treatments, indicating that the production of corrinoid in D. spongiiphila is constitutive or not specific for organohalide versus sulfate respiration. Electron-transporting proteins or mediators unique for reductive dehalogenation were not revealed in our analysis, and we hypothesize that reductive dehalogenation may share an electron-transporting system with sulfate reduction. The metabolism of D. spongiiphila, predicted from transcriptomic and proteomic results, demonstrates high metabolic versatility and provides insights into the survival strategies of a marine sponge symbiont in an environment rich in organohalide compounds and other secondary metabolites. IMPORTANCE Respiratory reductive dehalogenation is an important process in the overall cycling of both anthropogenic and natural organohalide compounds. Marine sponges produce a vast array of bioactive compounds as secondary metabolites, including diverse halogenated compounds that may enrich for dehalogenating bacteria. Desulfoluna spongiiphila strain AA1 was originally enriched and isolated from the marine sponge Aplysina aerophoba and can grow with both brominated compounds and sulfate as electron acceptors for respiration. An understanding of the overall gene expression and the protein production profile in response to organohalides is needed to identify the full complement of genes or enzymes involved in organohalide respiration. Elucidating the metabolic capacity of this sponge-associated bacterium lays the foundation for understanding how dehalogenating bacteria may control the fate of organohalide compounds in sponges and their role in a symbiotic organobromine cycle.


FEBS Letters ◽  
2016 ◽  
Vol 590 (6) ◽  
pp. 808-818 ◽  
Author(s):  
Sumihito Togi ◽  
Yosuke Hatano ◽  
Ryuta Muromoto ◽  
Eri Kawanishi ◽  
Osamu Ikeda ◽  
...  

Microbiology ◽  
2003 ◽  
Vol 149 (5) ◽  
pp. 1275-1284 ◽  
Author(s):  
Megan Cooper ◽  
Gholam Reza Tavankar ◽  
Huw D. Williams

The regulation of the cyanide-insensitive oxidase (CIO) in Pseudomonas aeruginosa, a bacterium that can synthesize HCN, is reported. The expression of a cioA–lacZ transcriptional fusion, CioA protein levels and CIO activity were low in exponential phase but induced about fivefold upon entry into stationary phase. Varying the O2 transfer coefficient from 11·5 h−1 to 87·4 h−1 had no effect on CIO expression and no correlation was observed between CIO induction and the dissolved O2 levels in the growth medium. However, a mutant deleted for the O2-sensitive transcriptional regulator ANR derepressed CIO expression in an O2-sensitive manner, with the highest induction occurring under low-O2 conditions. Therefore, CIO expression can respond to a signal generated by low O2 levels, but this response is normally kept in check by ANR repression. ANR may play an important role in preventing overexpression of the CIO in relation to other terminal oxidases. A component present in spent culture medium was able to induce CIO expression. However, experiments with purified N-butanoyl-l-homoserine lactone or N-(3-oxododecanoyl)homoserine lactone ruled out a role for these quorum-sensing molecules in the control of CIO expression. Cyanide was a potent inducer of the CIO at physiologically relevant concentrations and experiments using spent culture medium from a ΔhcnB mutant, which is unable to synthesize cyanide, showed that cyanide was the inducing factor present in P. aeruginosa spent culture medium. However, the finding that in a ΔhcnB mutant cioA–lacZ expression was induced normally upon entry into stationary phase indicated that cyanide was not the endogenous inducer of the terminal oxidase. The authors suggest that the failure of O2 to have an effect on CIO expression in the wild-type can be explained either by the requirement for an additional, stationary-phase-specific inducing signal or by the loss of an exponential-phase-specific repressing signal.


Sign in / Sign up

Export Citation Format

Share Document