scholarly journals Research on Supporting Method for High Stressed Soft Rock Roadway in Gentle Dipping Strata of Red Shale

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 423
Author(s):  
Chunde Ma ◽  
Jiaqing Xu ◽  
Guanshuang Tan ◽  
Weibin Xie ◽  
Zhihai Lv

Red shale is widely distributed among the deep mine areas of Kaiyang Phosphate Mine, which is the biggest underground phosphate mine of China. Because of the effect of various factors, such as high stress, ground water and so on, trackless transport roadways in deep mine areas were difficult to effectively support for a long time by using traditional supporting design methods. To deal with this problem, some innovative works were carried out in this paper. First, mineral composition and microstructure, anisotropic, hydraulic mechanical properties and other mechanical parameters of red shale were tested in a laboratory to reveal its deformation and failure characteristics from the aspect of lithology. Then, some numerical simulation about the failure process of the roadways in layered red shale strata was implemented to investigate the change regulation of stress and strain in the surrounding rock, according to the real rock mechanical parameters and in-situ stress data. Therefore, based on the composite failure law and existing support problems of red shale roadways, some effective methods and techniques were adopted, especially a kind of new wave-type bolt that was used to relieve rock expansion and plastic energy to prevent concentration of stress and excess deformation. The field experiment shows the superiorities in new techniques have been verified and successfully applied to safeguard roadway stability.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


2021 ◽  
Vol 13 (23) ◽  
pp. 13280
Author(s):  
Hai Wu ◽  
Qian Jia ◽  
Weijun Wang ◽  
Nong Zhong ◽  
Yiming Zhao

Taking a deep-mine horizontal roadway in inclined strata as our research object, the true triaxial simulation technique was used to establish a model of the inclined strata and carry out high-stress triaxial loading experiments. The experimental results show that the deformation of surrounding rock in the roadway presents heterogeneous deformation characteristics in time and space: the deformation of the surrounding rock at different positions of the roadway occurs at different times. In the process of deformation of the surrounding rock, deformation and failure occur at the floor of the roadway first, followed by the lower shoulder-angle of the roadway, and finally the rest of the roadway. The deformation amount in the various areas is different. The floor heave deformation of the roadway floor is the greatest and shows obvious left-right asymmetry. The deformation of the higher side is greater than that of the lower side. The model disassembly shows that the development of cracks in the surrounding rock is characterized by more cracks on the higher side and fewer cracks on the lower side but shows larger cracks across the width. The experimental results of high-stress deformation of the surrounding rock are helpful in the design of supports, the reinforcement scheme, and the parameter optimization of roadways in high-stress-inclined rock, and to improve the stability control of deep high-stress roadways.


2017 ◽  
Vol 27 (2) ◽  
pp. 245-252 ◽  
Author(s):  
Renshu Yang ◽  
Yongliang Li ◽  
Dongming Guo ◽  
Lan Yao ◽  
Tongmao Yang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Yuchun Mei ◽  
Weiteng Li ◽  
Ning Yang ◽  
Gang Wang ◽  
Tingchun Li ◽  
...  

Numerical simulation tests were performed on the arch-bolt combined supported mining tunnel through an improved numerical simulation approach. The typical soft rock roadway was took as the background, and the influencing factors such as ground stress level, lateral pressure coefficient, and support type and parameters were considered. The failure mechanism of a semicircular roadway with two straight walls was analyzed; results showed that the arch legs’ inward bending deformation and the arch-rock separation are the breakthrough of the global failure of the supporting system, and rock bolts breakage promoted the failure process. The effects of different controlling measures were analyzed including enlarging the bolt diameter, replacing the conventional bolts with energy-absorbing bolts, and setting arch locking bolts on the arch legs. The field test of the concrete-filled steel tube (CFST) arch-bolt composite support scheme was carried out in a high-stress soft rock roadway, and the results indicate the reliability of the main conclusions.


2021 ◽  
Vol 11 (19) ◽  
pp. 8906
Author(s):  
Wenqi Ding ◽  
Shi Tan ◽  
Rongqing Zhu ◽  
He Jiang ◽  
Qingzhao Zhang

The weakening effect is one of the most important causes triggering large deformation and failure of soft-rock engineering; however, few studies paid attention to damage evolution and constitutive relationship of rock in tensile damage in the excavation unloading and water-weakening process, not to mention the coupling process of unloading and water-weakening. In this paper, the mechanism and engineering characteristics of unloading softening and water-softening of water-rich soft rock are analyzed and summarized. Then with the aid of the strain equivalent principle, the damage of surrounding rock caused by unloading softening and water-softening is coupled, and the compression shear damage and the tensile damage of surrounding rock under the unloading process are analyzed. A damage constitutive model of rock subjected to excavation unloading and water-weakening is proposed considering the influence of water immersion time, and the proposed model is applied in a newly established finite element simulation method, which is suitable for excavation in the water-rich soft rock. Based on the mechanical-hydraulic-damage coupled method, the progressive failure process of surrounding rock under the dual softening effects can be reflected by the deteriorated parameters of damage elements. Finally, the field monitoring data of a typical section in the Xujiadi tunnel is used to verify the applicability and accuracy of the proposed dual softening model and simulation method.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Chen ◽  
Tianhui Ma ◽  
Chun’an Tang ◽  
Yanhong Du ◽  
Zhichao Li ◽  
...  

Based on the existing Canadian ESG microseismic monitoring system, a mobile microseismic monitoring system for a soft rock tunnel has been successfully constructed through continuous exploration and improvement to study the large-scale nucleation and development of microfractures in the soft rock of the Yangshan Tunnel. All-weather, continuous real-time monitoring is conducted while the tunnel is excavated through drilling and blasting, and the waveform characteristics of microseismic events are analysed. Through the recorded microseismic monitoring data, the variation characteristics of various parameters (e.g., the temporal, spatial, and magnitude distributions of the microseismic events, the frequency of microseismic events, and the microseismic event density and energy) are separately studied during the process of large-scale deformation instability and failure of the soft rock tunnel. The relationship between the deterioration of the rock mass and the microseismic activity during this failure process is consequently discussed. The research results show that a microseismic monitoring system can be used to detect precursors; namely, the microseismic event frequency and energy both will appear “lull” and “active” periods during the whole failure process of soft rock tunnel. Two peaks are observed during the evolution of failure. When the second peak occurs, it is accompanied by the destruction of the surrounding rock. The extent and strength of the damage within the surrounding rock can be delineated by the spatial, temporal, and magnitude distributions of the microseismic events and a microseismic event density nephogram. The results of microseismic analysis confirm that a microseismic monitoring system can be used to monitor the large-scale deformation and failure processes of a soft rock tunnel and provide early warning for on-site construction workers to ensure the smooth development of the project.


2013 ◽  
Vol 275-277 ◽  
pp. 2740-2743
Author(s):  
Jing You Yin ◽  
Er Qiang Li ◽  
Jia Wei Liu

In mining engineering construction, more and more involved in deep soft rock roadway stability control problem, also encountered deep soft rock underground engineering intersection problem, but its classification and support measures are far from perfect and systematic. This paper begins with a brief deep soft rock mine intersection classification, then summarize the deformation and failure characteristics, analysis of the impact factors and the reasons of its destruction, for roadway intersection supporting method is recommended.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wen Zhai ◽  
Yachao Guo ◽  
Xiaochuan Ma ◽  
Nailv Li ◽  
Peng Zhang ◽  
...  

With the increase of mining depth in underground engineering, deep ground pressure has an extremely unfavorable impact on safety production and the economic benefits of coal mines and the control of the roadway stability in deep mines are gradually highlighted. In this study, the working face 14203 of the Zaoquan coal mine was taken as the engineering background, the deformation mechanism of surrounding rock in the deep-buried high-stress roadway was analyzed, and the hydraulic fracturing pressure relief technology in the advanced roadway was proposed for surrounding rock control. Finally, the numerical simulation and field tests were used to validate the comprehensive effect of the proposed technology. Without damaging the roadway stability in the working face, the hydraulic fracturing pressure relief technology can optimize the stress environment and stability of the roadway through the artificial control of the roof fracture position. The numerical simulation shows that under the action of hydraulic fracturing, the cutting slot is formed, the deformation and failure mode of the roof are changed, the stress of surrounding rock is reduced, and the development of the plastic zone of surrounding rock is limited. As a result, the stability of surrounding rock in the roadway is effectively protected. The field test shows that after the adoption of hydraulic fracturing pressure relief technology, the roof subsidence, floor separation, bolt stress, and cable stress decrease, and the deformation of surrounding rock is reduced significantly. Therefore, hydraulic fracturing pressure relief technology is verified as an effective method to control the large deformation of the surrounding rock in the deep-buried roadway.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yuwen Gao ◽  
Chen Wang ◽  
Yong Liu ◽  
Yuyang Wang ◽  
Lianchang Han

Stability control for soft and broken surrounding rock of roadways is one important segment of mining support. Taking 1412 Roadway of a mine in Guizhou province as a research background, this paper studies the large deformation of surrounding rock and the failure of bolts and cables. The deformation and failure mechanism are analyzed by related theoretical analysis and field survey. Then, the feasibility of the composite controlling scheme, bolts and cables + grouting + steel tube concrete support, is verified by theoretical analysis, numerical simulation, and industrial test. Following results can be obtained: main reasons leading to the deformation of surrounding rock and the failure of cables and blots in the roadway are low strength and poor self-stability of surrounding rock, complex stress environment, low support resistance, and lack of reinforced support in crucial supporting sites; the control scheme can reduce the surrounding rock deformation by 40%, which meets the requirements of field application so that this practice can provide some guidance for other similar projects.


2013 ◽  
Vol 734-737 ◽  
pp. 759-763 ◽  
Author(s):  
Yong Li ◽  
Yun Yi Zhang ◽  
Ren Jie Gao ◽  
Shuai Tao Xie

Jixi mine area is one of the early mined areas in China and it's a typical deep mine. Because of large deformation of underground roadway and dynamic disasters occurred frequently in this mine, five measurement points of in-situ stress in this mine was measured and then analyzed with inversion. Based on these in-situ stress measurement data, numerical model of 3D in-situ stress back analysis was established. According to different stress fields, related analytical samples of neural network were given with FLAC program. Through the determination of hidden layers, hidden nodes and the setting of parameters, the network was optimized and trained. Then according to field measurement of in-situ stress, back analysis of initial stress field was conducted. Compared with field measurement, with accuracy requirement satisfied, it shows that the in-situ stress of rock mass obtained is basically reasonable. Meanwhile, it proves that the measurement of in-situ stress can provide deep mines with effective and rapid means, and also provide reliable data to optimization of deep roadway layout and supporting design.


Sign in / Sign up

Export Citation Format

Share Document