scholarly journals Eogenetic Karst Control of Carbonate Reservoirs during a Transient Exposure: A Case Study of the Ordovician Yingshan Formation in the Northern Slope of the Tazhong Uplift, Tarim Basin, China

Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 345 ◽  
Author(s):  
Yong Dan ◽  
Liangbiao Lin ◽  
Bin Liang ◽  
Qingyu Zhang ◽  
Yu Yu ◽  
...  

The Tazhong area of the Tarim Basin contains abundant oil and gas resources in Ordovician carbonate rocks, especially in the karst pores and caves of the Yingshan Formation. Research has indicated that the Yingshan Formation underwent a 7–11 Ma exposure during the middle Caledonian Period, resulting in large-scale karst pores and caves. However, the continental freshwater karst model cannot adequately explain the origin and distribution of karst pores and caves. In order to develop a more accurate karst model to guide petroleum exploration in the region, we analyzed the karst morphology, cave development statistics, and paleokarst environments. Karst reservoir characteristics were analyzed on the basis of the following analysis: (1) Karst morphological analyses based on core description and formation micro-imager (FMI) log analyses. The results showed that alveolar-like and Swiss cheese-like solution pores, spongy dissolution zones, pit cenotes, and small continuous karst caves developed in the Yingshan Formation. (2) The statistical analysis of pore and cave characteristics indicated that most of the karst pores and caves developed within 50 m below the unconformity where the average height of these features ranged from 0.1 to 3.0 m and their widths ranged up to 100 m. These pores and caves were commonly filled with gravel, clay, and calcite. Horizontal well and seismic attribute analysis indicated that these pores and caves were distributed over a large area. In plain view, the karst pore-cave system is comprised of cross-linked anastomosing networks of horizontal cave passages. And (3) Cathode luminescence and electron microprobe analyses suggested that clay filling within karst caves was freshwater related, while calcite filling was of seawater origin. Cements within solution pores showed three phases of luminescence, suggesting an alternating freshwater and seawater environment. Based on these characteristics, the karsts of the Yingshan Formation in the Tazhong area are interpreted to be similar to the eogenetic karsts in the Yucatan Peninsula of modern Mexico. Accordingly, this study indicates that the pore-caves of the Yingshan Formation can be subdivided into three sections. Further, the development and filling of these pore-cave sections are interpreted to have formed by eogenetic mixed-water karstification during three phases of relatively stable sea level in a coastal margin environment.

2019 ◽  
Vol 34 (4) ◽  
pp. 1511-1524
Author(s):  
Yong Dan ◽  
Liangbiao Lin ◽  
Bin Liang ◽  
Qingyu Zhang ◽  
Jianwen Cao ◽  
...  

2018 ◽  
Vol 45 (5) ◽  
pp. 873-883 ◽  
Author(s):  
Haizhou QU ◽  
Maoyao LIU ◽  
Yunfeng ZHANG ◽  
Zhenyu WANG ◽  
Zhenghong ZHANG ◽  
...  

2011 ◽  
Vol 29 (6) ◽  
pp. 743-758 ◽  
Author(s):  
Xiuxiang Lü ◽  
Xiang Wang ◽  
Jianfa Han ◽  
Weiwei Jiao ◽  
Hongfeng Yu ◽  
...  

Large-scale weathering crust karsted carbonate reservoir beds were developed in the Lower Ordovician Yingshan Formation on the northern slope of the Tazhong area in the Tarim Basin, NW China. The research on weathering crust karsted reservoir beds and faulting showed strongly heterogeneous karsted reservoir beds characterized by horizontal contiguous distribution and vertical superimposition, with fracture-hole as the main reservoir space. High quality reservoir beds were developed in the vertical seepage zone and horizontal phreatic zone, 0–200 meters below the unconformity. Reservoir bed quality of karsted carbonate rock was greatly improved by faulting, which increased the depth and size of karstification. A strike-slip fault developed over a long period in the NE direction and a thrust fault in the NW direction crossed each other, and caused distinct segmentation of the Tazhong No.1 Fault and dissection of the Yingshan Formation into multiple structural units. The strike-slip fault was the significant hydrocarbon migration pathway. Multiple hydrocarbon charging points were formed by the thrust fault and strike-slip fault, as the important fill-in of late-stage gas accumulation. Under the dual control of faulting and karstification, accumulation of hydrocarbons in the Lower Ordovician Yingshan Formation showed distinct segment-wise and block-wise features. Oil distribution is “high in the west and interior, low in the east and exterior”, while gas distribution is the opposite. The hydrocarbon play extends within 0.8–4.5 kilometers from the strike-slip fault and appeared layered vertically at 10–220 meters below the unconformity.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Xiaoliang Bai ◽  
Shaonan Zhang ◽  
Qingyu Huang ◽  
Siyang Zhang ◽  
Ning Ye ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


2000 ◽  
Vol 624 ◽  
Author(s):  
Lingling Wu ◽  
Hongjun Gao ◽  
Dennis M. Manos

ABSTRACTA large-scale plasma source immersion ion implantation (PSII) system with planar coil RFI plasma source has been used to study an inkless, deposition-free, mask-based surface conversion patterning as an alternative to direct writing techniques on large-area substrates by implantation. The apparatus has a 0.61 m ID and 0.51 m tall chamber, with a base pressure in the 10−8 Torr range, making it one of the largest PSII presently available. The system uses a 0.43 m ID planar rf antenna to produce dense plasma capable of large-area, uniform materials treatment. Metallic and semiconductor samples have been implanted through masks to produce small geometric patterns of interest for device manufacturing. Si gratings were also implanted to study application to smaller features. Samples are characterized by AES, TEM and variable-angle spectroscopic ellipsometry. Composition depth profiles obtained by AES and VASE are compared. Measured lateral and depth profiles are compared to the mask features to assess lateral diffusion, pattern transfer fidelity, and wall-effects. The paper also presents the results of MAGIC calculations of the flux and angle of ion trajectories through the boundary layer predicting the magnitude of flux as a function of 3-D location on objects in the expanding sheath


Author(s):  
Hai Wang ◽  
Baoshen Guo ◽  
Shuai Wang ◽  
Tian He ◽  
Desheng Zhang

The rise concern about mobile communication performance has driven the growing demand for the construction of mobile network signal maps which are widely utilized in network monitoring, spectrum management, and indoor/outdoor localization. Existing studies such as time-consuming and labor-intensive site surveys are difficult to maintain an update-to-date finegrained signal map within a large area. The mobile crowdsensing (MCS) paradigm is a promising approach for building signal maps because collecting large-scale MCS data is low-cost and with little extra-efforts. However, the dynamic environment and the mobility of the crowd cause spatio-temporal uncertainty and sparsity of MCS. In this work, we leverage MCS as an opportunity to conduct the city-wide mobile network signal map construction. We propose a fine-grained city-wide Cellular Signal Map Construction (CSMC) framework to address two challenges including (i) the problem of missing and unreliable MCS data; (ii) spatio-temporal uncertainty of signal propagation. In particular, CSMC captures spatio-temporal characteristics of signals from both inter- and intra- cellular base stations and conducts missing signal recovery with Bayesian tensor decomposition to build large-area fine-grained signal maps. Furthermore, CSMC develops a context-aware multi-view fusion network to make full use of external information and enhance signal map construction accuracy. To evaluate the performance of CSMC, we conduct extensive experiments and ablation studies on a large-scale dataset with over 200GB MCS signal records collected from Shanghai. Experimental results demonstrate that our model outperforms state-of-the-art baselines in the accuracy of signal estimation and user localization.


2019 ◽  
Vol 33 (6) ◽  
pp. 4849-4856 ◽  
Author(s):  
Zhiyao Zhang ◽  
Yijie Zhang ◽  
Guangyou Zhu ◽  
Jianfa Han ◽  
Linxian Chi

Sign in / Sign up

Export Citation Format

Share Document