scholarly journals Physico–Chemical Interaction between Clay Minerals and Albumin Protein according to the Type of Clay

Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 396 ◽  
Author(s):  
Kim ◽  
Oh

Clay minerals are widely utilized in pharmaceutical and dermatological sciences as a gastrointestinal medicine or skin remediation agent. In order to verify the feasibility of clays as an injection, pill, or topical agent, it is important to study their interactions with biological components, such as proteins. In this study, we utilized a protein fluorescence quenching assay and circular dichroism spectroscopy to evaluate general aspects of protein denaturation and conformational change, respectively. Three different clays; layered double oxide (LDO), montmorilonite (MMT) and halloysite nanotube (HNT), were treated with albumin and the physico-chemical effect on the protein’s conformation was investigated. MMT was shown to influence the conformational change the most, owing to the large accessible adsorption site. HNT showed meaningful circular dichroism (CD) band collapse as well as fluorescence quenching in the protein, suggesting a potential harmful effect of HNT toward the protein. Among the three tested clays, LDO was determined to affect protein structure the least in terms of three-dimensional conformation and helical structure.

2019 ◽  
Vol 26 (7) ◽  
pp. 532-541 ◽  
Author(s):  
Cadena-Cadena Francisco ◽  
Cárdenas-López José Luis ◽  
Ezquerra-Brauer Josafat Marina ◽  
Cinco-Moroyoqui Francisco Javier ◽  
López-Zavala Alonso Alexis ◽  
...  

Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.


2016 ◽  
Vol 20 (07) ◽  
pp. 773-784 ◽  
Author(s):  
Magdalena Malachowska ◽  
Claudio Sperduto ◽  
Mariia Darmostuk ◽  
Donato Monti ◽  
Mariano Venanzi ◽  
...  

A series of porphyrins with directly meso-attached “sucrose” moiety by the carbon C-6′ of its “fructose” end was synthesized, and their physico-chemical and aggregation properties studied by spectroscopic (fluorescence, circular dichroism, resonance light scattering) techniques. The effect of selected porphyrins on tumor cells was also evaluated.


2008 ◽  
Vol 15 (4) ◽  
pp. 420-422 ◽  
Author(s):  
A. J. Miles ◽  
Robert W. Janes ◽  
A. Brown ◽  
D. T. Clarke ◽  
J. C. Sutherland ◽  
...  

1977 ◽  
Vol 163 (2) ◽  
pp. 297-302 ◽  
Author(s):  
S S Chen ◽  
P C Engel ◽  
P M Bayley

1. Computer averaging of multiple scans was used to refine the circular dichroism spectrum of bovine liver glutamate dehydrogenase, revealing well-defined structure in the aromatic region. 2. The circular dichroism of NAD+ bound to glutamate dehydrogenase is strongly negative at 260nm, probably owing to immobilization of the adenosine moiety. Loss of the characteristic adenine-nicotinamide interaction suggests that the coenzyme is bound in an unstacked conformation. 3. Glutarate and succinate, substrate analogues that are both inhibitors competitive with glutamate, do not significantly perturb the circular-dichroism spectrum of the enzyme in the absence of NAD+. 4. In the presence of NAD+, 150nM-succinate decreases the negative circular dichroism corresponding to bound coenzyme, but does not affect the protein circular dichroism. However, ISOmM-glutarate causes profound alternations of the circular-dichroism spectra of the bound NAD+ and of the enzyme, indicative of a protein conformational change. This direct evidence of conformational change specifically promoted by C5 dicarboxylates confirms the previous inference from protection studies. 5. The conformational change is discussed in relation to the allosteric mechanism of glutamate dehydrogenase.


1979 ◽  
Vol 57 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Michael Walsh ◽  
Frits C. Stevens ◽  
Kimio Oikawa ◽  
Cyril M. Kay

The structural features of the native Ca2+-dependent protein modulator and two chemically modified derivatives, namely, nitrotyrosyl modulator and alkylated modulator, were examined by circular dichroism. The binding of Ca2+ to the native molecule was accompanied by an increase in helical content from 40 to 49%, with little effect on the local environments of aromatic residues in the modulator. The Mg2+ and Mn2+ do not elicit the conformational change induced by the binding of Ca2+, which also stabilizes the modulator against urea denaturation.The overall secondary structure of nitrotyrosyl modulator is indistinguishable from that of the native protein and undergoes a similar conformational change upon binding Ca2+. These observations are in agreement with the fact that nitration has no effect on modulator functions. Futhermore, nitrotyrosyl modulator interacts with troponin I only in the presence of Ca2+, as detected by circular dichroism (cd). On the other hand, alkylation of five methionine residues on the modulator with benzyl bromide affects protein conformation, as evidenced by a reduced helical content of only 34%. Alkylated modulator retains the ability of the native protein to bind Ca2+ although the affinity of this derivative for Ca2+ is reduced some three orders of magnitude relative to the native protein, with Kd = 3.2 × 10−4 M.The results with the alkylated modulator, in conjunction with previous cd studies on N-chlorosuccinimide oxidized modulator are utilized to advance a model for the Ca2+ activation of modulator protein, based on three conformational states of the molecule.


Sign in / Sign up

Export Citation Format

Share Document