scholarly journals Fluorescence Resonance Energy Transfer Assay for High-Throughput Screening of ADAMTS1 Inhibitors

Molecules ◽  
2011 ◽  
Vol 16 (12) ◽  
pp. 10709-10721 ◽  
Author(s):  
Jianhao Peng ◽  
Lili Gong ◽  
Kun Si ◽  
Xiaoyu Bai ◽  
Guanhua Du
2011 ◽  
Vol 16 (5) ◽  
pp. 486-493 ◽  
Author(s):  
Adam B. Shapiro ◽  
Ann E. Eakin ◽  
Grant K. Walkup ◽  
Olga Rivin

DNA ligase is the enzyme that catalyzes the formation of the backbone phosphodiester bond between the 5′-PO4 and 3′-OH of adjacent DNA nucleotides at single-stranded nicks. These nicks occur between Okazaki fragments during replication of the lagging strand of the DNA as well as during DNA repair and recombination. As essential enzymes for DNA replication, the NAD+-dependent DNA ligases of pathogenic bacteria are potential targets for the development of antibacterial drugs. For the purposes of drug discovery, a high-throughput assay for DNA ligase activity is invaluable. This article describes a straightforward, fluorescence resonance energy transfer–based DNA ligase assay that is well suited for high-throughput screening for DNA ligase inhibitors as well as for use in enzyme kinetics studies. Its use is demonstrated for measurement of the steady-state kinetic constants of Haemophilus influenzae NAD+-dependent DNA ligase and for measurement of the potency of an inhibitor of this enzyme.


2007 ◽  
Vol 13 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Thomas Schröter ◽  
Dmitriy Minond ◽  
Amiee Weiser ◽  
Chinh Dao ◽  
Jeff Habel ◽  
...  

Kinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction. In the research presented here, 1536-well format time-resolved fluorescence resonance energy transfer (TR-FRET) and LK assays were created to identify novel Rho-associated kinase II (ROCK-II) inhibitors. HTS campaigns for both assays were conducted in this miniaturized format. It was found that both assays were able to consistently reproduce the expected pharmacology of inhibitors known to be specific to ROCK-II (fasudil IC50: 283 ± 27 nM and 336 ± 54 nM for TR-FRET and LK assays, respectively; Y-27632 IC50: 133 ± 7.8 nM and 150 ± 22 nM for TR-FRET and LK assays, respectively). In addition, both assays proved robust for HTS efforts, demonstrating excellent plate Z′ values during the HTS campaign (0.84 ± 0.03; 0.72 ± 0.05 for LK and TR-FRET campaigns, respectively). Both formats identified scaffolds of known and novel ROCK-II inhibitors with similar sensitivity. A comparison of the performance of these 2 assay formats in an HTS campaign was enabled by the existence of a subset of 25,000 compounds found in both our institutional and the Molecular Library Screening Center Network screening files. Analysis of the HTS campaign results based on this subset of common compounds showed that both formats had comparable total hit rates, hit distributions, amount of hit clusters, and format-specific artifact. It can be concluded that both assay formats are suitable for the discovery of ROCK-II inhibitors, and the choice of assay format depends on reagents and/or screening technology available. ( Journal of Biomolecular Screening 2008:17-28)


2007 ◽  
Vol 12 (6) ◽  
pp. 842-848 ◽  
Author(s):  
Heidi Appelblom ◽  
Jussi Nurmi ◽  
Tero Soukka ◽  
Michael Pasternack ◽  
Kai E. Penttilä ◽  
...  

A homogeneous high-throughput screening method based on time-resolved fluorescence resonance energy transfer (TR-FRET) for the measurement of calcium-dependent multimerization of an EF-hand protein, sorcin, is described. The assay is based on a specific sorcin binding peptide conjugated either with an intrinsically highly fluorescent europium chelate (donor) or an Alexa Fluor 700 fluorophore (acceptor). Addition of calcium results in multimerization of sorcin, allowing several peptides to bind simultaneously to the epitopes of the multimeric protein complex, and the proximity of peptides labeled either with donor or acceptor label results in fluorescence resonance energy transfer between the 2 labels. When no calcium is present, the protein remains in a monomer form, and thus no FRET can take place. In the optimized assay construct, the assay was performed in 45 min, and a more than 20-fold signal-to-background ratio was achieved. The reversibility of sorcin multimerization was shown by chelating free calcium with ethylenediamine tetraacetic acid (EDTA). The developed homogeneous assay can be used in screening molecules that either inhibit or enhance multimerization of sorcin, and the assay format is applicable to various noncompetitive high-throughput screening assays detecting protein multimerization reactions. ( Journal of Biomolecular Screening 2007:842-848)


2000 ◽  
Vol 5 (5) ◽  
pp. 319-328 ◽  
Author(s):  
Michael D. Boisclair ◽  
Christopher McClure ◽  
Serene Josiah ◽  
Susan Glass ◽  
Steve Bottomley ◽  
...  

An assay based on fluorescence resonance energy transfer (FRET) has been developed to screen for ubiquitination inhibitors. The assay measures the transfer of ubiquitin from Ubc4 to HECT protein Rsc 1083. Secondary reagents (streptavidin and antibody to glutathione-S-transferase [GST]), pre-labeled with fluorophores (europium chelate, Eu3+, and allophycocyanin [APC]), are noncovalently attached via tags (biotin and GST) to the reactants (ubiquitin and Rsc). When Rsc is ubiquitinated, Eu3+ and APC are brought into close proximity, permitting energy transfer between the two fluorescent labels. FRET was measured as time-resolved fluorescence at the emission wave-length of APC, almost entirely free of nonspecific fluorescence from Eu3+ and APC. The FRET assay generated a lower ratio of signal to background (8 vs. 31) than an assay for the same ubiquitination step that was developed as a dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA). However, compared to the DELFIA method, use of FRET resulted in higher precision (4% vs. 11% intraplate coefficient of variation). Quenching of fluorescence was minimal when compounds were screened at 10 pxg/ml using FRET. Employing a quick and simple homogeneous method, the FRET assay for ubiquitin transfer is ideally suited for high throughput screening.


2005 ◽  
Vol 16 (6) ◽  
pp. 385-392 ◽  
Author(s):  
Kenji Sudo ◽  
Kayo Yamaji ◽  
Kouich Kawamura ◽  
Tomoko Nishijima ◽  
Naoko Kojima ◽  
...  

Hepatitis C virus (HCV) NS3-NS4A protease is an attractive target for anti-HCV agents because of its important role in replication. An optimized fluorescence resonance energy transfer (FRET) substrate for NS3-NS4A protease, based on the sequence of the NS5A-5B cleavage site, was designed and synthesized. High-throughput screening of in-house compound libraries was performed using a FRET substrate FS10 (MOCAc-DKIVPC-SMSYK-Dnp) and MBP-NS3-NS4A fusion protein. Several hit compounds were found, including YZ-9577 (2-oxido-1,2,5-oxadiazole-3,4-diyl) bis (phenylmethanone) with potent inhibitory activity (IC50=1.6 μM) and good selectivity against other human serine proteases.


2012 ◽  
Vol 17 (5) ◽  
pp. 662-672 ◽  
Author(s):  
Adam B. Shapiro ◽  
Haris Jahić ◽  
Ning Gao ◽  
Laurel Hajec ◽  
Olga Rivin

Peptidoglycan biosynthesis is an essential process in bacteria and is therefore a suitable target for the discovery of new antibacterial drugs. One of the last cytoplasmic steps of peptidoglycan biosynthesis is catalyzed by the integral membrane protein MraY, which attaches soluble UDP- N-acetylmuramoyl-pentapeptide to the membrane-bound acceptor undecaprenyl phosphate. Although several natural product–derived inhibitors of MraY are known, none have the properties necessary to be of clinical use as antibacterial drugs. Here we describe a novel, homogeneous, fluorescence resonance energy transfer–based MraY assay that is suitable for high-throughput screening for novel MraY inhibitors. The assay allows for continuous measurement, or it can be quenched prior to measurement.


Sign in / Sign up

Export Citation Format

Share Document