tar rna
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 32)

H-INDEX

56
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Cecilia Rocchi ◽  
Camille Louvat ◽  
Adriana Erica Miele ◽  
Julien Batisse ◽  
Christophe Guillon ◽  
...  

Recent evidence indicated that HIV-1 Integrase (IN) binds genomic viral RNA (gRNA) playing a critical role in viral particle morphogenesis and gRNA stability in host cells. Combining biophysical and biochemical approaches we show that the C-terminal flexible 18-residues tail of IN acts as a sensor of the peculiar apical structure of trans-activation response element RNA (TAR), directly interacting with its hexaloop. We highlighted how the whole IN C-terminal domain, once bound to TAR, can change its structure assisting the binding of Tat, the HIV trans-activator protein, which finally displaces IN from TAR. Our results are consistent with the emerging role of IN in early stage of proviral transcription and suggest new steps of HIV-1 life cycle that can be considered as therapeutic targets.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2004
Author(s):  
Awadh Alanazi ◽  
Andrey Ivanov ◽  
Namita Kumari ◽  
Xionghao Lin ◽  
Songping Wang ◽  
...  

The HIV-1 Tat protein interacts with TAR RNA and recruits CDK9/cyclin T1 and other host factors to induce HIV-1 transcription. Thus, Tat–TAR RNA interaction, which is unique for HIV-1, represents an attractive target for anti-HIV-1 therapeutics. To target Tat–TAR RNA interaction, we used a crystal structure of acetylpromazine bound to the bulge of TAR RNA, to dock compounds from the Enamine database containing over two million individual compounds. The docking procedure identified 173 compounds that were further analyzed for the inhibition of HIV-1 infection. The top ten inhibitory compounds with IC50 ≤ 6 µM were selected and the three least toxic compounds, T6780107 (IC50 = 2.97 μM), T0516-4834 (IC50 = 0.2 μM) and T5628834 (IC50 = 3.46 μM), were further tested for HIV-1 transcription inhibition. Only the T0516-4834 compound showed selective inhibition of Tat-induced HIV-1 transcription, whereas the T6780107 compound inhibited equally basal and Tat-induced transcription and the T5628834 compound only inhibited basal HIV-1 transcription. The compounds were tested for the inhibition of translation and showed minimal (<25%) effect. The T0516-4834 compound also showed the strongest inhibition of HIV-1 RNA expression and p24 production in CEM T cells and peripheral blood mononuclear cells infected with HIV-1 IIIB. Of the three compounds, only the T0516-4834 compound significantly disrupted Tat–TAR RNA interaction. Additionally, of the three tested compounds, T5628834 and, to a lesser extent, T0516-4834 disrupted Tat–CDK9/cyclin T1 interaction. None of the three compounds showed significant inhibition of the cellular CDK9 and cyclin T1 levels. In silico modelling showed that the T0516-4834 compound interacted with TAR RNA by binding to the bulge formed by U23, U25, C39, G26,C39 and U40 residues. Taken together, our study identified a novel benzoxazole compound that disrupted Tat–TAR RNA interaction and inhibited Tat-induced transcription and HIV-1 infection, suggesting that this compound might serve as a new lead for anti-HIV-1 therapeutics.


2021 ◽  
Vol 22 (18) ◽  
pp. 9998
Author(s):  
Jung Min Kim ◽  
Honggu Chun

The various effects of native protein folding on the stability and folding rate of intrinsically disordered proteins (IDPs) in crowded intracellular environments are important in biomedicine. Although most studies on protein folding have been conducted in vitro, providing valuable insights, studies on protein folding in crowded intracellular environments are scarce. This study aimed to explore the effects of intracellular molecular crowding on the folding of mutant transactivator HIV-1 Tat based on intracellular interactions, including TAR RNA, as proof of the previously reported chaperna-RNA concept. Considering that the Tat–TAR RNA motif binds RNA, we assessed the po tential function of TAR RNA as a chaperna for the refolding of R52Tat, a mutant in which the argi nine (R) residues at R52 have been replaced with alanine (A) by site-directed mutagenesis. We mon itored Tat-EGFP and Tat folding in HeLa cells via time-lapse fluorescence microscopy and biolayer interferometry using EGFP fusion as an indicator for folding status. These results show that the refolding of R52A Tat was stimulated well at a 0.3 μM TAR RNA concentration; wild-type Tat refolding was essentially abolished because of a reduction in the affinity for TAR RNA at that con centration. The folding and refolding of R52Tat were mainly promoted upon stimulation with TAR RNA. Our findings provide novel insights into the therapeutic potential of chaperna-mediated fold ing through the examination of as-yet-unexplored RNA-mediated protein folding as well as viral genetic variants that modulate viral evolutionary linkages for viral diseases inside a crowded intra cellular environment.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 897
Author(s):  
Melissa Stunnenberg ◽  
John L. van Hamme ◽  
Atze T. Das ◽  
Ben Berkhout ◽  
Teunis B. H. Geijtenbeek

The highly conserved trans-acting response element (TAR) present in the RNA genome of human immunodeficiency virus 1 (HIV-1) is a stably folded hairpin structure involved in viral replication. However, TAR is also sensed by viral sensors, leading to antiviral immunity. While high variation in the TAR RNA structure renders the virus replication-incompetent, effects on viral sensing remain unclear. Here, we investigated the role of TAR RNA structure and stability on viral sensing. TAR mutants with deletions in the TAR hairpin that enhanced thermodynamic stability increased antiviral responses. Strikingly, TAR mutants with lower stability due to destabilization of the TAR hairpin also increased antiviral responses without affecting pro-inflammatory responses. Moreover, mutations that affected the TAR RNA sequence also enhanced specific antiviral responses. Our data suggest that mutations in TAR of replication-incompetent viruses can still induce immune responses via viral sensors, hereby underscoring the robustness of HIV-1 RNA sensing mechanisms.


Author(s):  
Awadh Alanazi ◽  
Andrey Ivanov ◽  
Namita Kumari ◽  
Xionghao Lin ◽  
Songping Wang ◽  
...  

HIV-1 Tat protein interacts with TAR RNA and recruits CDK9/cyclin T1 and other host factors to induce HIV-1 transcription. Thus Tat-TAR RNA interaction, which is unique for HIV-1, represents an attractive target for anti-HIV-1 therapeutics. To target Tat-TAR RNA interaction, we used a crystal structure of TAR RNA with acetylpromazine bound to the bulge of TAR RNA, to dock compounds from Enamine database containing 1.6 million individual compounds. Docking identified 173 compounds that were analyzed for the inhibition of HIV-1 infection. Top ten inhibitory compounds with IC50 ≤ 6 µM were selected and the three least toxic compounds, T6780107 (IC50=2.97 μM), T0516-4834 (IC50=0.2 μM) and T5628834 (IC50=3.46 μM), were further tested for HIV-1 transcription inhibition. Only T0516-4834 compound showed selective inhibition of Tat-induced HIV-1 transcription, whereas T6780107 compound inhibited equally basal and Tat-induced transcription and T5628834 compound only inhibited basal HIV-1 transcription. The T0516-4834 compound also showed strongest inhibition of HIV-1 gag RNA expression and p24 production in CEM T cells infected with HIV-1 IIIB. Of the three compounds, only the T0516-4834 compound disrupted Tat-TAR RNA interaction indicating that it might target TAR RNA. Also, of the three tested compounds, T5628834 but not T6780107 or T0516-4834 disrupted Tat-CDK9/cyclin T1 interaction. Taken together, our study identified novel compound T0516-4834 that disrupted Tat-TAR RNA interaction and inhibited Tat-induced transcription and HIV-1 infection suggesting that this compound might serve as a new lead for anti-HIV-1 therapeutics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Updesh Dixit ◽  
Savita Bhutoria ◽  
Xuhong Wu ◽  
Liming Qiu ◽  
Menachem Spira ◽  
...  

AbstractINI1/SMARCB1 binds to HIV-1 integrase (IN) through its Rpt1 domain and exhibits multifaceted role in HIV-1 replication. Determining the NMR structure of INI1-Rpt1 and modeling its interaction with the IN-C-terminal domain (IN-CTD) reveal that INI1-Rpt1/IN-CTD interface residues overlap with those required for IN/RNA interaction. Mutational analyses validate our model and indicate that the same IN residues are involved in both INI1 and RNA binding. INI1-Rpt1 and TAR RNA compete with each other for IN binding with similar IC50 values. INI1-interaction-defective IN mutant viruses are impaired for incorporation of INI1 into virions and for particle morphogenesis. Computational modeling of IN-CTD/TAR complex indicates that the TAR interface phosphates overlap with negatively charged surface residues of INI1-Rpt1 in three-dimensional space, suggesting that INI1-Rpt1 domain structurally mimics TAR. This possible mimicry between INI1-Rpt1 and TAR explains the mechanism by which INI1/SMARCB1 influences HIV-1 late events and suggests additional strategies to inhibit HIV-1 replication.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1874
Author(s):  
Alice Sosic ◽  
Giulia Olivato ◽  
Caterina Carraro ◽  
Richard Göttlich ◽  
Dan Fabris ◽  
...  

Specific RNA sequences regulate functions essential to life. The Trans-Activation Response element (TAR) is an RNA stem–bulge–loop structure involved in several steps of HIV-1 replication. In this work, we show how RNA targeting can inhibit HIV-1 nucleocapsid (NC), a highly conserved protein known to catalyze nucleic acid melting and strand transfers during reverse transcription. Our RNA targeting strategy consists of the employment of bis-3-chloropiperidines (B-CePs) to impair RNA melting through bifunctional alkylation. Specific interactions between B-CePs and TAR RNA were analytically investigated by gel electrophoresis and mass spectrometry, allowing the elucidation of B-CePs’ recognition of TAR, and highlighting an RNA-directed mechanism of protein inhibition. We propose that B-CePs can freeze TAR tridimensional conformation, impairing NC-induced dynamics and finally inhibiting its functions in vitro.


2021 ◽  
Author(s):  
Lazaros Melidis ◽  
Iain B. Styles ◽  
Michael J. Hannon

MD simulations and Markov state modeling explore induced fit binding of metallo-helicates to bulges in dynamic TAR RNA, reproduce experimental data, show how RNA conformational flexibility is reduced, and give mechanistic insight into insertion.


Sign in / Sign up

Export Citation Format

Share Document