scholarly journals Establishment of a PCR Assay for the Detection and Discrimination of Authentic Cordyceps and Adulterant Species in Food and Herbal Medicines

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1932 ◽  
Author(s):  
Byeong Moon ◽  
Wook Kim ◽  
Inkyu Park ◽  
Gi-Ho Sung ◽  
Pureum Noh

Accurate detection and differentiation of adulterants in food ingredients and herbal medicines are crucial for the safety and basic quality control of these products. Ophiocordyceps sinensis is described as the only fungal source for the authentic medicinal ingredient used in the herbal medicine “Cordyceps”, and two other fungal species, Cordyceps militaris and Isaria tenuipes, are the authentic fungal sources for food ingredients in Korea. However, substitution of these three species, and adulteration of herbal material and dietary supplements originating from Cordyceps pruinosa or Isaria cicadae, seriously affects the safety and reduces the therapeutic efficacy of these products. Distinguishing between these species based on their morphological features is very difficult, especially in commercially processed products. In this study, we employed DNA barcode-based species-specific sequence characterized amplified region (SCAR) markers to discriminate authentic herbal Cordyceps medicines and Cordyceps-derived dietary supplements from related but inauthentic species. The reliable authentication tool exploited the internal transcribed spacer (ITS) region of a nuclear ribosomal RNA gene (nrDNA). We used comparative nrDNA-ITS sequence analysis of the five fungal species to design two sets of SCAR markers. Furthermore, we used a set of species-specific SCAR markers to establish a real-time polymerase chain reaction (PCR) assay for the detection of species, contamination, and degree of adulteration. We confirmed the discriminability and reproducibility of the SCAR marker analysis and the real-time PCR assay using commercially processed food ingredients and herbal medicines. The developed SCAR markers may be used to efficiently differentiate authentic material from their related adulterants on a species level. The ITS-based SCAR markers and the real-time PCR assay constitute a useful genetic tool for preventing the adulteration of Cordyceps and Cordyceps-related dietary supplements.

Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 599-608 ◽  
Author(s):  
Martin I. Chilvers ◽  
Lindsey J. du Toit ◽  
Hajime Akamatsu ◽  
Tobin L. Peever

A real-time fluorescent polymerase chain reaction (PCR) assay was developed using SYBR Green chemistry to quantify the Botrytis spp. associated with onion (Allium cepa) seed that are also able to induce neck rot of onion bulbs, i.e., B. aclada, B. allii, and B. byssoidea. The nuclear ribosomal intergenic spacer (IGS) regions of target and nontarget Botrytis spp. were sequenced, aligned, and used to design a primer pair specific to B. aclada, B. allii, and B. byssoidea. Primers and amplification parameters were optimized to avoid amplifying the related species B. cinerea, B. porri, and B. squamosa, as well as Sclerotinia sclerotiorum and isolates of 15 other fungal species commonly found associated with onion seed. The primers reliably detected 10 fg of genomic DNA per PCR reaction extracted from pure cultures of B. aclada and B. allii. Conventional assays of surface-disinfested and nondisinfested seed on an agar medium were used to determine the incidence of neck rot Botrytis spp. associated with each of 23 commercial onion seed lots, and the real-time PCR assay was used to determine the quantity of DNA of neck rot Botrytis spp. in each seed lot. A linear relationship could not be found between the incidence of seed infected with the neck rot Botrytis spp. using the conventional agar seed assays and the quantity of DNA of the neck rot Botrytis spp. detected by the real-time PCR assay. However, the real-time PCR assay appeared to be more sensitive than the conventional agar assay, allowing detection of neck rot Botrytis spp. in 5 of the 23 seed lots that tested negative using the conventional agar seed assay.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 835-838 ◽  
Author(s):  
Paula Agudelo ◽  
Stephen A. Lewis ◽  
Bruce A. Fortnum

Meloidogyne arenaria is an economically important parasite of many crops worldwide. Identification and detection of this species in soil samples is necessary for the design of crop rotation systems, selection of resistant cultivars, and potential use of biological control options. The objective of this study was to develop and validate a real-time polymerase chain reaction (PCR) assay, using species-specific primers and SYBR Green I Dye, for identification of M. arenaria. The specificity of the assay was confirmed by testing for amplification of DNA from other Meloidogyne spp. and from M. arenaria populations of different geographic origins. Field soil samples containing a mixture of M. arenaria and M. incognita were used to compare identification by the real-time PCR assay with identification by esterase phenotype analysis of mature females and by morphometrics of juveniles. The real-time PCR assay provided an accurate and sensitive means for the identification of single juveniles from soil samples.


2012 ◽  
Vol 75 (4) ◽  
pp. 743-747 ◽  
Author(s):  
BWALYA LUNGU ◽  
W. DOUGLAS WALTMAN ◽  
ROY D. BERGHAUS ◽  
CHARLES L. HOFACRE

Conventional culture methods have traditionally been considered the “gold standard” for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis–specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis–specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.


2015 ◽  
Vol 9 (1) ◽  
pp. e0003469 ◽  
Author(s):  
Robin H. Miller ◽  
Clifford O. Obuya ◽  
Elizabeth W. Wanja ◽  
Bernhards Ogutu ◽  
John Waitumbi ◽  
...  

2007 ◽  
Vol 70 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
V. M. BOHAYCHUK ◽  
G. E. GENSLER ◽  
M. E. McFALL ◽  
R. K. KING ◽  
D. G. RENTER

Conventional culture methods have traditionally been considered the “gold standards” for the isolation and identification of foodborne pathogens. However, culture methods are labor-intensive and time-consuming. We have developed a real-time PCR assay for the detection of Salmonella in a variety of food and food-animal matrices. The real-time PCR assay incorporates both primers and hybridization probes based on the sequence of the Salmonella invA gene and uses fluorescent resonance energy transfer technology to ensure highly sensitive and specific results. This method correctly classified 51 laboratory isolates of Salmonella and 28 non-Salmonella strains. The method was also validated with a large number of field samples that consisted of porcine feces and cecal contents, pork carcasses, bovine feces and beef carcasses, poultry cecal contents and carcasses, equine feces, animal feeds, and various food products. The samples (3,388) were preenriched in buffered peptone water and then selectively enriched in tetrathionate and Rappaport-Vassiliadis broths. Aliquots of the selective enrichment broths were combined for DNA extraction and analysis by the real-time PCR assay. When compared with the culture method, the diagnostic sensitivity of the PCR assay for the various matrices ranged from 97.1 to 100.0%, and the diagnostic specificity ranged from 91.3 to 100.0%. Kappa values ranged from 0.87 to 1.00, indicating excellent agreement of the real-time PCR assay to the culture method. The reduction in time and labor makes this highly sensitive and specific real-time PCR assay an excellent alternative to conventional culture methods for surveillance and research studies to improve food safety.


2011 ◽  
Vol 175 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Sergei N. Shchelkunov ◽  
Dmitrii N. Shcherbakov ◽  
Rinat A. Maksyutov ◽  
Elena V. Gavrilova

2016 ◽  
Vol 227 ◽  
pp. 42-47 ◽  
Author(s):  
Douglas Chan ◽  
Joel Barratt ◽  
Tamalee Roberts ◽  
Owen Phillips ◽  
Jan Šlapeta ◽  
...  

2016 ◽  
Vol 17 (1) ◽  
pp. 1-5 ◽  
Author(s):  
S. J. Anderson ◽  
H. E. Simmons ◽  
R. D. French-Monar ◽  
G. P. Munkvold

A real-time PCR assay was used to compare seedling infection by Sphacelotheca reiliana, the causal agent of head smut, among five inbred genotypes representing low, moderate, and high susceptibility to the disease. Seeds were coated with teliospores and planted in autoclaved field soil in a growth chamber. Incidence of seedling infection at growth stage V3 differed between an inbred genotype of low susceptibility and those of moderate and high susceptibility, but did not differ between the high and moderately susceptible groups (P < 0.05). The real-time PCR assay was also used to compare infection status at early and late vegetative stages with observable symptoms in the field. We detected infection via real-time PCR in maize at both growth stages during field trials conducted in Texas and California but observed no disease symptoms (smutted ears or tassels). Notably, the fungus was present in up to 31% of the ear shoots in plots without disease symptoms. The real-time assay can be a useful tool for screening seedling-stage host resistance, and for better understanding the progress of infection in different maize genotypes. The field data suggest that asymptomatic infection is much more common than previously thought, and may have important implications for the epidemiology of this fungus under diverse plant resistance and growing conditions. Accepted for publication 11 December 2015. Published 5 January 2016.


2004 ◽  
Vol 67 (11) ◽  
pp. 2424-2429 ◽  
Author(s):  
G. E. KAUFMAN ◽  
G. M. BLACKSTONE ◽  
M. C. L. VICKERY ◽  
A. K. BEJ ◽  
J. BOWERS ◽  
...  

This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26°C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P &lt; 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P &lt; 0.05; and oyster: r = 0.99, P &lt; 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P &lt; 0.05) but reduced correlation (r =−0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus–specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h from sampling time.


Sign in / Sign up

Export Citation Format

Share Document