scholarly journals Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4055 ◽  
Author(s):  
Mariusz Banach ◽  
Magdalena Wiloch ◽  
Katarzyna Zawada ◽  
Wojciech Cyplik ◽  
Wojciech Kujawski

Aronia fruits contain many valuable components that are beneficial to human health. However, fruits are characterized by significant variations in chemical composition dependent on the growing conditions and harvesting period. Therefore, there is a need to formulate the extracts with a precisely defined content of health-promoting substances. Aronia dry extracts (ADE) were prepared from frozen pomace applying water extraction, followed by purification and spray-drying. Subsequently, the content of anthocyanins, phenolic acids, and polyphenols was determined. The high-quality chokeberry pomace enabled obtaining extracts with anthocyanin content much higher than the typical market standards. Moreover, it was found that the antioxidant capacity of aronia extracts exceeded those found in other fruit preparations. Antioxidant and free-radical scavenging properties were evaluated using a 2,2′-diphenyl-1-picrylhydrazyl using Electron Paramagnetic Resonance (EPR) spectroscopy (DPPH-EPR) test and Oxygen Radical Absorbance Capacity (ORAC) assay. The inhibition of lipid peroxidation and the level of inflammatory markers have been also investigated using lipopolysaccharide (LPS)-stimulated RAW 264 cells. It was revealed that ADE standardized to 25% of anthocyanins depresses the level of markers of inflammation and lipid peroxidation (Interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and malondialdehyde (MDA)) in in vitro conditions. Additionally, it was confirmed that ADE at all analyzed concentrations did not show any cytotoxic effect as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hengli Zhang ◽  
Min Wen ◽  
Jiayu Chen ◽  
Chaojie Yao ◽  
Xiao Lin ◽  
...  

Ferroptosis and inflammation induced by cerebral hemorrhage result in an excessive inflammatory response and irreversible neuronal injury. Alleviating ferroptosis might be an effective way to prevent neuroinflammatory injury and promote neural functional recovery. Pyridoxal isonicotinoyl hydrazine (PIH), a lipophilic iron-chelating agent, has been reported to reduce excess iron-induced cytotoxicity. However, whether PIH could ameliorate the effects of hemorrhagic stroke is not completely understood. In the present study, the preventive effects of PIH in an intracerebral hemorrhage (ICH) mouse model were investigated. Neurological score, rotarod test, and immunofluorescence around the hematoma were assessed to evaluate the effects of PIH on hemorrhagic injury. The involvement of ferroptosis and inflammation was also examined in vitro to explore the underlying mechanism. Results showed that administration of PIH prevented neuronal cell death and reduced lipid peroxidation in Erastin-treated PC-12 cells. In vivo, mice treated with PIH after ICH attenuated neurological deficit scores. Additionally, we found PIH reduced ROS production, iron accumulation, and lipid peroxidation around the hematoma peripheral tissue. Meanwhile, ICH mice treated with PIH showed an upregulation of the key ferroptosis enzyme, glutathione peroxidase 4, and downregulation of cyclooxygenase-2. Moreover, PIH administration inhibited proinflammatory polarization and reduced interleukin-1 beta and tumor necrosis factor alpha in ICH mice. Collectively, these results demonstrated that PIH protects mice against hemorrhage stroke, which was associated with mitigation of inflammation and ferroptosis.


2000 ◽  
Vol 89 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Carole Groussard ◽  
Isabelle Morel ◽  
Martine Chevanne ◽  
Michel Monnier ◽  
Josianne Cillard ◽  
...  

Divergent literature data are found concerning the effect of lactate on free radical production during exercise. To clarify this point, we tested the pro- or antioxidant effect of lactate ion in vitro at different concentrations using three methods: 1) electron paramagnetic resonance (EPR) was used to study the scavenging ability of lactate toward the superoxide aion (O2 −·) and hydroxyl radical (·OH); 2) linoleic acid micelles were employed to investigate the lipid radical scavenging capacity of lactate; and 3) primary rat hepatocyte culture was used to study the inhibition of membrane lipid peroxidation by lactate. EPR experiments exhibited scavenging activities of lactate toward both O2 −· and ·OH; lactate was also able to inhibit lipid peroxidation of hepatocyte culture. Both effects of lactate were concentration dependent. However, no inhibition of lipid peroxidation by lactate was observed in the micelle model. These results suggested that lactate ion may prevent lipid peroxidation by scavenging free radicals such as O2 −· and ·OH but not lipid radicals. Thus lactate ion might be considered as a potential antioxidant agent.


2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


2021 ◽  
Vol 28 (3) ◽  
pp. 191-201
Author(s):  
Tim Schauer ◽  
Anne-Sophie Mazzoni ◽  
Anna Henriksson ◽  
Ingrid Demmelmaier ◽  
Sveinung Berntsen ◽  
...  

Exercise training has been hypothesized to lower the inflammatory burden for patients with cancer, but the role of exercise intensity is unknown. To this end, we compared the effects of high-intensity (HI) and low-to-moderate intensity (LMI) exercise on markers of inflammation in patients with curable breast, prostate and colorectal cancer undergoing primary adjuvant cancer treatment in a secondary analysis of the Phys-Can randomized trial (NCT02473003). Sub-group analyses focused on patients with breast cancer undergoing chemotherapy. Patients performed 6 months of combined aerobic and resistance exercise on either HI or LMI during and after primary adjuvant cancer treatment. Plasma taken at baseline, immediately post-treatment and post-intervention was analyzed for levels of interleukin 1 beta (IL1B), IL6, IL8, IL10, tumor-necrosis factor alpha (TNFA) and C-reactive protein (CRP). Intention-to-treat analyses of 394 participants revealed no significant between-group differences. Regardless of exercise intensity, significant increases of IL6, IL8, IL10 and TNFA post-treatment followed by significant declines, except for IL8, until post-intervention were observed with no difference for CRP or IL1B. Subgroup analyses of 154 patients with breast cancer undergoing chemotherapy revealed that CRP (estimated mean difference (95% CI): 0.59 (0.33; 1.06); P  = 0.101) and TNFA (EMD (95% CI): 0.88 (0.77; 1); P  = 0.053) increased less with HI exercise post-treatment compared to LMI. Exploratory cytokine co-regulation analysis revealed no difference between the groups. In patients with breast cancer undergoing chemotherapy, HI exercise resulted in a lesser increase of CRP and TNFA immediately post-treatment compared to LMI, potentially protecting against chemotherapy-related inflammation.


2018 ◽  
Vol 51 (6) ◽  
pp. 2575-2590 ◽  
Author(s):  
Gang Zhong ◽  
Ruiming Liang ◽  
Jun Yao ◽  
Jia Li ◽  
Tongmeng Jiang ◽  
...  

Background/Aims: Current drug therapies for osteoarthritis (OA) are not practical because of the cytotoxicity and severe side-effects associated with most of them. Artemisinin (ART), an antimalarial agent, is well known for its safety and selectivity to kill injured cells. Based on its anti-inflammatory activity and role in the inhibition of OA-associated Wnt/β-catenin signaling pathway, which is crucial in the pathogenesis of OA, we hypothesized that ART might have an effect on OA. Methods: The chondro-protective and antiarthritic effects of ART on interleukin-1-beta (IL-1β)-induced and OA patient-derived chondrocytes were investigated in vitro using cell viability assay, glycosaminoglycan secretion, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western blotting. We also used OA model rats constructed by anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx) in the joints to investigate the effects of ART on OA by gross observation, morphological staining, immunohistochemistry, and enzyme-linked immunosorbent assay. Results: ART exhibited potent anti-inflammatory effects by inhibiting the expression of proinflammatory chemokines and cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor alpha, and matrix metallopeptidase-13. It also showed favorable chondro-protective effect as evidenced by enhanced cell proliferation and viability, increased glycosaminoglycan deposition, prevention of chondrocyte apoptosis, and degeneration of cartilage. Further, ART inhibited OA progression and cartilage degradation via the Wnt/β-catenin signaling pathway, suggesting that it might serve as a Wnt/β-catenin antagonist to reduce inflammation and prevent cartilage degradation. Conclusion: In conclusion, ART alleviates IL-1β-mediated inflammatory response and OA progression by regulating the Wnt/β-catenin signaling pathway. Thereby, it might be developed as a potential therapeutic agent for OA.


2010 ◽  
Vol 65 (9-10) ◽  
pp. 537-542 ◽  
Author(s):  
Canan Kuş ◽  
Fatma Sözüdönmez ◽  
Benay Can-Eke ◽  
Tülay Çoban

Antioxidant and radical scavenging properties of a series of 2-[4-(substituted piperazin-/ piperidin-1-ylcarbonyl)phenyl]-1H-benzimidazole derivatives were examined. Free radical scavenging properties of compounds 11-30 and 33 were evaluated for the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide anion radical. In addition the inhibitory effects on the NADPH-dependent lipid peroxidation levels were determined by measuring the formation of 2-thiobarbituric acid reactive substances (TBARS) using rat liver microsomes. Compound 33 which has a p-fluorobenzyl substitutent at position 1 exhibited the strongest inhibition (83%) of lipid peroxidation at a concentration of 10-3 M, while the nonsubstituted analogue 13 caused 57% inhibition. This result is fairly consistent with the antimicrobial activity results against both Staphylococcus aureus and Candida albicans.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4151-4156 ◽  
Author(s):  
S Jiang ◽  
JD Levine ◽  
Y Fu ◽  
B Deng ◽  
R London ◽  
...  

Primary human bone marrow megakaryocytes were studied for their ability to express and release cytokines potentially relevant to their proliferation and/or differentiation. The purity of the bone marrow megakaryocytes was assessed by morphologic and immunocytochemical criteria. Unstimulated marrow megakaryocytes constitutively expressed genes for interleukin-1 beta (IL-1 beta), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha), by the polymerase chain reaction (PCR) and Northern blot analysis. At the protein level, megakaryocytes secreted significant amounts of IL-1 beta (53.6 +/- 3.6 pg/mL), IL-6 (57.6 +/- 15.6 pg/mL), and GM-CSF (24 +/- 4 pg/mL) but not TNF-alpha. Exposure of human marrow megakaryocytes to IL-1 beta increased the levels of IL-6 (87.3 +/- 2.3 pg/mL) detected in the culture supernatants. Transforming growth factor- beta was also able to stimulate IL-6, IL-1 beta, and GM-CSF secretion, but was less potent than stimulation with phorbol-12-myristate-13- acetate (PMA). The secreted cytokines acted additively to maintain and increase the number of colony-forming unit-megakaryocytes colonies (approximately 35%). These studies demonstrate the production of multiple cytokines by isolated human bone marrow megakaryocytes constitutively or stimulated in vitro. The capacity of human megakaryocytes to synthesize several cytokines known to modulate hematopoietic cells supports the concept that there may be an autocrine mechanism operative in the regulation of megakaryocytopoiesis.


1994 ◽  
Vol 301 (1) ◽  
pp. 183-186 ◽  
Author(s):  
A Ito ◽  
K Imada ◽  
T Sato ◽  
T Kubo ◽  
K Matsushima ◽  
...  

Uterine cervical fibroblasts prepared from rabbits at 23 days of gestation were found to produce spontaneously the neutrophil chemotactic factor/interleukin 8 (IL-8). When the cells were treated with recombinant human interleukin 1 alpha and 1 beta (rhIL-1 alpha and -1 beta), both cytokines similarly enhanced the production of IL-8 in a dose-dependent manner. Recombinant tumour necrosis factor alpha also enhanced its production to a lesser extent, but interleukin 6 failed to modulate the production. Physiological concentrations of progesterone suppressed both the spontaneous and IL-1-mediated production of IL-8 in parallel with the decrease in the steady-state levels of its mRNA. These suppressive actions of progesterone were offset by co-treatment of cells with a progesterone antagonist, mifepristone (RU486). In conclusion, basal and IL-1-induced IL-8 production in rabbit uterine cervical fibroblasts is down-regulated by progesterone at the transcriptional level. These results obtained in vitro and our previous observations indicating that progesterone modulates the extra-cellular matrix breakdown via the suppression of production of matrix metalloproteinases and the augmentation of production matrix metalloproteinases and the augmentation of production of their specific inhibitors (TIMP-1) [Sato, Ito, Mori, Yamashita, Hayakawa and Nagase (1991) Biochem. J. 275, 645-650] may explain the mechanisms of the maintenance of pregnancy until parturition and the acceleration of uterine cervical ripening and dilatation at term.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 892-892
Author(s):  
Muzaffer DeMir ◽  
Debra A. Hoppensteadt ◽  
Josephine Cunanan ◽  
Omer Iqbal ◽  
Jawed Fareed

Abstract Venous thromboembolic events (VTE) are associated with lung cancer and significantly contributes to the increased mortality in these patients. While the increased prevalence of VTE is fully recognized in lung cancer, its pathogenesis is not fully understood. Even the patients undergoing therapeutic interventions are at high risk to develop VTE. These patients provide a unique clinical setting to investigate the pathogenesis of lung cancer associated thrombosis. In a prospective, randomized, controlled study patients with inoperable lung cancer (n=100) were randomized to receive chemotherapy, radiation and warfarin (INR 1.5–2.5) or chemotherapy, radiation without warfarin (n=50). Blood samples were drawn prior to and after the second treatment cycle with warfarin. All samples were analyzed for tumor necrosis factor alpha (TNF a), CD 40 ligand (CD 40L), C-reactive protein (CRP), interleukin 1 beta (IL-1b), asymmetric dimethylarginine (ADMA) and nitric oxide (NO) as summarized in Table 1. All of the surrogate markers of inflammation showed a decreased trend (13–50%) in the warfarin treated group, whereas the non-warfarin treated group exhibited an increase (18–46%) in all markers except CRP and ADMA. The levels of various inflammatory markers are upregulated in lung cancer suggesting a pathogenic role of this process in lung cancer. Warfarin down regulated the inflammatory process in contrast to the non-warfarin treated group. The clinical relevance of these observations require additional analysis. Table 1 Test Warfarin Treated Warfarin Treated Warfarin Treated Non-Warfarin Treated Non-Warfarin Treated Non-Warfarin Treated Pre Post % Change Pre Post % Change TNF α (pg/ml) 63±22 44.4±18.2 ↓30 50.7±18 62.9±19.2 ↑24 CD 40L (ng/ml) 671±212 470±123 ↓29 563±176 712±234 ↑26 CRP (μg/ml) 19.1±8.5 9.6±2.8 ↓50 18.2±9.2 9.9±3.1 ↓46 NO (μM) 33.4±9.8 29±8.5 ↓13 29.9±8.8 35.2±8.2 ↑18 IL-1β (pg/ml) 14.6±5.7 11.1±5.3 ↓24 15.3±6.2 15.2±5.8 NC ADMA (μ/ml) 2.0±0.8 1.53±0.8 ↓24 2.0±0.8 1.9±0.7 ↓18


Sign in / Sign up

Export Citation Format

Share Document