scholarly journals Genome Mining Reveals Two Missing CrtP and AldH Enzymes in the C30 Carotenoid Biosynthesis Pathway in Planococcus faecalis AJ003T

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5892
Author(s):  
Jun Ho Lee ◽  
Jin Won Kim ◽  
Pyung Cheon Lee

Planococcus faecalis AJ003T produces glycosyl-4,4′-diaponeurosporen-4′-ol-4-oic acid as its main carotenoid. Five carotenoid pathway genes were presumed to be present in the genome of P. faecalis AJ003T; however, 4,4-diaponeurosporene oxidase (CrtP) was non-functional, and a gene encoding aldehyde dehydrogenase (AldH) was not identified. In the present study, a genome mining approach identified two missing enzymes, CrtP2 and AldH2454, in the glycosyl-4,4′-diaponeurosporen-4′-ol-4-oic acid biosynthetic pathway. Moreover, CrtP2 and AldH enzymes were functional in heterologous Escherichia coli and generated two carotenoid aldehydes (4,4′-diapolycopene-dial and 4,4′-diaponeurosporene-4-al) and two carotenoid carboxylic acids (4,4′-diaponeurosporenoic acid and 4,4′-diapolycopenoic acid). Furthermore, the genes encoding CrtP2 and AldH2454 were located at a distance the carotenoid gene cluster of P. faecalis.

2003 ◽  
Vol 69 (12) ◽  
pp. 7563-7566 ◽  
Author(s):  
Stephen J. Van Dien ◽  
Christopher J. Marx ◽  
Brooke N. O'Brien ◽  
Mary E. Lidstrom

ABSTRACT Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Kinga Kłodawska ◽  
Przemysław Malec ◽  
Mihály Kis ◽  
Zoltán Gombos ◽  
Kazimierz Strzałka

EPR spectroscopy using 5-doxylstearic acid (5-SASL) and 16-doxylstearic acid (16-SASL) spin probes was used to study the fluidity of thylakoid membranes. These were isolated from wild type Synechocystis and from several mutants in genes encoding selected enzymes of the carotenoid biosynthesis pathway and/or acyl-lipid desaturases. Cyanobacteria were cultivated at 25°C and 35°C under different light regimes: photoautotrophically (PAG) and/or in light-activated heterotrophic conditions (LAHG). The relative fluidity of membranes was estimated from EPR spectra based on the empirical outermost splitting parameter in a temperature range from 15°C to 40°C. Our findings demonstrate that in native thylakoid membranes the elimination of xanthophylls decreased fluidity in the inner membrane region under optimal growth conditions (25°C) and increased it under sublethal heat stress (35°C). This indicated that the overall fluidity of native photosynthetic membranes in cyanobacteria may be influenced by the ratio of polar to non-polar carotenoid pools under different environmental conditions.


2012 ◽  
Vol 79 (2) ◽  
pp. 610-618 ◽  
Author(s):  
Gyu Hyeon Song ◽  
Se Hyeuk Kim ◽  
Bo Hyun Choi ◽  
Se Jong Han ◽  
Pyung Cheon Lee

ABSTRACTA limited number of carotenoid pathway genes from microbial sources have been studied for analyzing the pathway complementation in the heterologous hostEscherichia coli. In order to systematically investigate the functionality of carotenoid pathway enzymes inE. coli, the pathway genes of carotenogenic microorganisms (Brevibacterium linens,Corynebacterium glutamicum,Rhodobacter sphaeroides,Rhodobacter capsulatus,Rhodopirellula baltica, andPantoea ananatis) were modified to form synthetic expression modules and then were complemented withPantoea agglomeranspathway enzymes (CrtE, CrtB, CrtI, CrtY, and CrtZ). The carotenogenic pathway enzymes in the synthetic modules showed unusual activities when complemented withE. coli. For example, the expression of heterologous CrtEs ofB. linens,C. glutamicum, andR. balticainfluencedP. agglomeransCrtI to convert its substrate phytoene into a rare product—3,4,3′,4′-tetradehydrolycopene—along with lycopene, which was an expected product, indicating that CrtE, the first enzyme in the carotenoid biosynthesis pathway, can influence carotenoid profiles. In addition, CrtIs ofR. sphaeroidesandR. capsulatusconverted phytoene into an unusual lycopene as well as into neurosporene. Thus, this study shows that the functional complementation of pathway enzymes from different sources is a useful methodology for diversifying biosynthesis as nature does.


2021 ◽  
Vol 85 (1) ◽  
pp. 42-52
Author(s):  
Taro Shiraishi ◽  
Tomohisa Kuzuyama

Abstract Phosphonates are organophosphorus compounds possessing a characteristic C−P bond in which phosphorus is directly bonded to carbon. As phosphonates mimic the phosphates and carboxylates of biological molecules to potentially inhibit metabolic enzymes, they could be lead compounds for the development of a variety of drugs. Fosfomycin (FM) is a representative phosphonate natural product that is widely used as an antibacterial drug. Here, we review the biosynthesis of FM, which includes a recent breakthrough to find a missing link in the biosynthetic pathway that had been a mystery for a quarter-century. In addition, we describe the genome mining of phosphonate natural products using the biosynthetic gene encoding an enzyme that catalyzes C–P bond formation. We also introduce the chemoenzymatic synthesis of phosphonate derivatives. These studies expand the repertoires of phosphonates and the related biosynthetic machinery. This review mainly covers the years 2012-2020.


1999 ◽  
Vol 181 (9) ◽  
pp. 2789-2796 ◽  
Author(s):  
Jian Song ◽  
Tianhui Xia ◽  
Roy A. Jensen

ABSTRACT Pterin 4a-carbinolamine dehydratase is bifunctional in mammals. In addition to playing a catalytic role in pterin recycling in the cytoplasm, it plays a regulatory role in the nucleus, where it acts as a dimerization-cofactor component (called DCoH) for the transcriptional activator HNF-1α. A thus far unique operon in Pseudomonas aeruginosa contains a gene encoding a homolog (PhhB) of the regulatory dehydratase, together with genes encoding phenylalanine hydroxylase (PhhA) and aromatic aminotransferase (PhhC). Using complementation of tyrosine auxotrophy in Escherichia colias a functional test, we have found that the in vivo function of PhhA requires PhhB. Strikingly, mammalian DCoH was an effective substitute for PhhB, and either one was effective in trans. Surprisingly, the required presence of PhhB for complementation did not reflect a critical positive regulatory effect of phhB onphhA expression. Rather, in the absence of PhhB, PhhA was found to be extremely toxic in E. coli, probably due to the nonenzymatic formation of 7-biopterin or a similar derivative. However, bacterial PhhB does appear to exert modest regulatory effects in addition to having a catalytic function. PhhB enhances the level of PhhA two- to threefold, as was demonstrated by gene inactivation ofphhB in P. aeruginosa and by comparison of the levels of expression of PhhA in the presence and absence of PhhB inEscherichia coli. Experiments using constructs having transcriptional and translational fusions with a lacZreporter indicated that PhhB activates PhhA at the posttranscriptional level. Regulation of PhhA and PhhB is semicoordinate; both PhhA and PhhB are induced coordinately in the presence of eitherl-tyrosine or l-phenylalanine, but PhhB exhibits a significant basal level of activity that is lacking for PhhA. Immunoprecipitation and affinity chromatography showed that PhhA and PhhB form a protein-protein complex.


1997 ◽  
Vol 69 (10) ◽  
pp. 2151-2158 ◽  
Author(s):  
Joseph Hirschberg ◽  
M. Cohen ◽  
Mark Harker ◽  
Tamar Lotan ◽  
Varda Mann ◽  
...  

2010 ◽  
Vol 4 (4) ◽  
pp. 269-280 ◽  
Author(s):  
Pejman Azadi ◽  
Ntui Valentaine Otang ◽  
Dong Poh Chin ◽  
Ikuo Nakamura ◽  
Masaki Fujisawa ◽  
...  

2004 ◽  
Vol 186 (20) ◽  
pp. 6698-6705 ◽  
Author(s):  
Jason A. Opdyke ◽  
Ju-Gyeong Kang ◽  
Gisela Storz

ABSTRACT A previous bioinformatics-based search for small RNAs in Escherichia coli identified a novel RNA named IS183. The gene encoding this small RNA is located between and on the opposite strand of genes encoding two transcriptional regulators of the acid response, gadX (yhiX) and gadW (yhiW). Given that IS183 is encoded in the gad gene cluster and because of its role in regulating acid response genes reported here, this RNA has been renamed GadY. We show that GadY exists in three forms, a long form consisting of 105 nucleotides and two processed forms, consisting of 90 and 59 nucleotides. The expression of this small RNA is highly induced during stationary phase in a manner that is dependent on the alternative sigma factor σS. Overexpression of the three GadY RNA forms resulted in increased levels of the mRNA encoding the GadX transcriptional activator, which in turn caused increased levels of the GadA and GadB glutamate decarboxylases. A promoter mutation which abolished gadY expression resulted in a reduction in the amount of gadX mRNA during stationary phase. The gadY gene was shown to overlap the 3′ end of the gadX gene, and this overlap region was found to be necessary for the GadY-dependent accumulation of gadX mRNA. We suggest that during stationary phase, GadY forms base pairs with the 3′-untranslated region of the gadX mRNA and confers increased stability, allowing for gadX mRNA accumulation and the increased expression of downstream acid resistance genes.


2000 ◽  
Vol 182 (1) ◽  
pp. 143-145 ◽  
Author(s):  
Makoto Kitabatake ◽  
Man Wah So ◽  
Debra L. Tumbula ◽  
Dieter Söll

ABSTRACT The pathway of cysteine biosynthesis in archaea is still unexplored. Complementation of a cysteine auxotrophic Escherichia coli strain NK3 led to the isolation of the Methanosarcina barkeri cysK gene [encoding O-acetylserine (thiol)-lyase-A], which displays great similarity to bacterialcysK genes. Adjacent to cysK is an open reading frame orthologous to bacterial cysE (serine transacetylase) genes. These two genes could account for cysteine biosynthesis in this archaeon. Analysis of recent genome data revealed the presence of bacteria-like cysM genes [encodingO-acetylserine (thiol)-lyase-B] in Pyrococcusspp., Sulfolobus solfataricus, and Thermoplasma acidophilum. However, no orthologs for these genes can be found in Methanococcus jannaschii, Methanobacterium thermoautotrophicum, and Archaeoglobus fulgidus, implying the existence of unrecognizable genes for the same function or a different cysteine biosynthesis pathway.


Sign in / Sign up

Export Citation Format

Share Document