scholarly journals Polysaccharide- and β-Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4322
Author(s):  
Cuong Viet Bui ◽  
Thomas Rosenau ◽  
Hubert Hettegger

Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019–2020 of this rapidly developing field.

Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 213
Author(s):  
Marziyeh E. Kenari ◽  
Joshua I. Putman ◽  
Ravi P. Singh ◽  
Brandon B. Fulton ◽  
Huy Phan ◽  
...  

Twelve new azole compounds were synthesized through an ene reaction involving methylidene heterocycles and phenylmaleimide, producing four oxazoles, five thiazoles, and one pyridine derivative, and ethyl glyoxylate for an oxazole and a thiazole compound. The twelve azoles have a stereogenic center in their structure. Hence, a method to separate the enantiomeric pairs, must be provided if any further study of chemical and pharmacological importance of these compounds is to be accomplished. Six chiral stationary phases were assayed: four were based on macrocyclic glycopeptide selectors and two on linear carbohydrates, i.e., derivatized maltodextrin and amylose. The enantiomers of the entire set of new chiral azole compounds were separated using three different mobile phase elution modes: normal phase, polar organic, and reversed phase. The most effective chiral stationary phase was the MaltoShell column, which was able to separate ten of the twelve compounds in one elution mode or another. Structural similarities in the newly synthesized oxazoles provided some insights into possible chiral recognition mechanisms.


Author(s):  
Mohammed El Amin Zaid ◽  
Nasser Belboukhari ◽  
Khaled Sekkoum ◽  
Bousmaha Ibtissam ◽  
Hassan Y Aboul Enein

Abstract A thionation reaction was performed on some chiral flavanones using Lawesson’s reagent (LR) and leads to the formation of new chiral thiocarbonyl flavanes. LR in this thionation reaction with Hesperetin and Naringenin gives new flavan-4-thiones with yields ranged between 41 and 52%. Based on the Wittig reaction principle, LR is currently the most widely used reagent for this type of reaction. Enantiomeric separation by high-performance liquid chromatography methods was then set-up using three different polysaccharide-based chiral stationary phases (CSPs). Chiral separations were successfully accomplished with high resolution (1.22 ≤ Rs ≤ 5.23). The chiral discrimination mechanism(s) between the analytes under study, mobile phase, and the CSPs were discussed.


2000 ◽  
Vol 35 (2) ◽  
pp. 245-262 ◽  
Author(s):  
Francis I. Onuska ◽  
Ken A. Terry ◽  
R. James Maguire

Abstract The analysis of aromatic amines, particularly benzidines, at trace levels in environmental media has been difficult because of the lack of suitable deactivated capillary column stationary phases for gas chromatography. This report describes the use of an improved type of column as well as a method for the analysis of anilines and benzidines in water, wastewater and sewage samples. Extraction procedures are applicable to a wide range of compounds that are effectively partitioned from an aqueous matrix into methylene chloride, or onto a solid-phase extraction cartridge. The extracted analytes are also amenable to separation on a capillary gas chromatographic column and transferable to the mass spectrometer. These contaminants are converted to their N-trifluoroacetyl derivatives. Aniline and some substituted anilines, and 3,3’-dichlorobenzidine and benzidine were determined in 24-h composite industrial water, wastewater, primary sludge and final effluent samples at concentrations from 0.03 up to 2760 µg/L.


The recycling and reuse of materials and objects were extensive in the past, but have rarely been embedded into models of the economy; even more rarely has any attempt been made to assess the scale of these practices. Recent developments, including the use of large datasets, computational modelling, and high-resolution analytical chemistry, are increasingly offering the means to reconstruct recycling and reuse, and even to approach the thorny matter of quantification. Growing scholarly interest in the topic has also led to an increasing recognition of these practices from those employing more traditional methodological approaches, which are sometimes coupled with innovative archaeological theory. Thanks to these efforts, it has been possible for the first time in this volume to draw together archaeological case studies on the recycling and reuse of a wide range of materials, from papyri and textiles, to amphorae, metals and glass, building materials and statuary. Recycling and reuse occur at a range of site types, and often in contexts which cross-cut material categories, or move from one object category to another. The volume focuses principally on the Roman Imperial and late antique world, over a broad geographical span ranging from Britain to North Africa and the East Mediterranean. Last, but not least, the volume is unique in focusing upon these activities as a part of the status quo, and not just as a response to crisis.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2237 ◽  
Author(s):  
P. R. Sarika ◽  
Paul Nancarrow ◽  
Abdulrahman Khansaheb ◽  
Taleb Ibrahim

Phenol–formaldehyde (PF) resin continues to dominate the resin industry more than 100 years after its first synthesis. Its versatile properties such as thermal stability, chemical resistance, fire resistance, and dimensional stability make it a suitable material for a wide range of applications. PF resins have been used in the wood industry as adhesives, in paints and coatings, and in the aerospace, construction, and building industries as composites and foams. Currently, petroleum is the key source of raw materials used in manufacturing PF resin. However, increasing environmental pollution and fossil fuel depletion have driven industries to seek sustainable alternatives to petroleum based raw materials. Over the past decade, researchers have replaced phenol and formaldehyde with sustainable materials such as lignin, tannin, cardanol, hydroxymethylfurfural, and glyoxal to produce bio-based PF resin. Several synthesis modifications are currently under investigation towards improving the properties of bio-based phenolic resin. This review discusses recent developments in the synthesis of PF resins, particularly those created from sustainable raw material substitutes, and modifications applied to the synthetic route in order to improve the mechanical properties.


Author(s):  
Hernâni Marques ◽  
Pedro Cruz-Vicente ◽  
Tiago Rosado ◽  
Mário Barroso ◽  
Luís A. Passarinha ◽  
...  

Environmental tobacco smoke exposure (ETS) and smoking have been described as the most prevalent factors in the development of certain diseases worldwide. According to the World Health Organization, more than 8 million people die every year due to exposure to tobacco, around 7 million due to direct ETS and the remaining due to exposure to second-hand smoke. Both active and second-hand exposure can be measured and controlled using specific biomarkers of tobacco and its derivatives, allowing the development of more efficient public health policies. Exposure to these compounds can be measured using different methods (involving for instance liquid- or gas-chromatographic procedures) in a wide range of biological specimens to estimate the type and degree of tobacco exposure. In recent years, a lot of research has been carried out using different extraction methods and different analytical equipment; this way, liquid–liquid extraction, solid-phase extraction or even miniaturized procedures have been used, followed by chromatographic analysis coupled mainly to mass spectrometric detection. Through this type of methodologies, second-hand smokers can be distinguished from active smokers, and this is also valid for e-cigarettes and vapers, among others, using their specific biomarkers. This review will focus on recent developments in the determination of tobacco smoke biomarkers, including nicotine and other tobacco alkaloids, specific nitrosamines, polycyclic aromatic hydrocarbons, etc. The methods for their detection will be discussed in detail, as well as the potential use of threshold values to distinguish between types of exposure.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 112
Author(s):  
Marine Morvan ◽  
Ivan Mikšík

Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain D-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with D-Asp in elastin, β-amyloid and α-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer's disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of D-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


Sign in / Sign up

Export Citation Format

Share Document