scholarly journals Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6075
Author(s):  
Mengyue Xu ◽  
Zhili Wan ◽  
Xiaoquan Yang

The naturally occurring saponins exhibit remarkable interfacial activity and also possess many biological activities linking to human health benefits, which make them particularly attractive as bifunctional building blocks for formulation of colloidal multiphase food systems. This review focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying the relationship between the structural features of saponin molecules and their subsequent self-assembly and interfacial properties. The recent applications of these two saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity and processability. These natural saponin and saponin-based colloids are expected to be used as sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.

Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


1992 ◽  
Vol 277 ◽  
Author(s):  
Geoffrey A. Ozin ◽  
Carol L. Bowes ◽  
Mark R. Steele

ABSTRACTVarious MOCVD (metal-organic chemical vapour deposition) type precursors and their self-assembled semiconductor nanocluster products [1] have been investigated in zeolite Y hosts. From analysis of in situ observations (FTIR, UV-vis reflectance, Mössbauer, MAS-NMR) of the reaction sequences and structural features of the precursors and products (EXAFS and Rietveld refinement of powder XRD data) the zeolite is viewed as providing a macrospheroidal, multidendate coordination environment towards encapsulated guests. By thinking about the α- and β-cages of the zeolite Y host effectively as a zeolate ligand composed of interconnected aluminosilicate “crown ether-like” building blocks, the materials chemist is able to better understand and exploit the reactivity and coordination properties of the zeolite internal surface for the anchoring and self-assembly of a wide range of encapsulated guests. This approach helps with the design of synthetic strategies for creating novel guest-host inclusion compounds having possible applications in areas of materials science such as nonlinear optics, quantum electronics, and size/shape selective catalysis.


Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


2020 ◽  
Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 661
Author(s):  
Irene Torres-García ◽  
Josefa L. López-Martínez ◽  
Manuel Muñoz-Dorado ◽  
Ignacio Rodríguez-García ◽  
Miriam Álvarez-Corral

Organic extracts of marine invertebrates, mainly sponges, from seas all over the world are well known for their high in vitro anticancer and antibiotic activities which make them promising sources of compounds with potential use as pharmaceutical leads. Most of the structures discovered so far have a peculiar structural feature in common: a 1,2-dioxane ring. This is a highly reactive heterocycle that can be considered as an endoperoxide function. Together with other structural features, this group could be responsible for the strong biological activities of the substances present in the extracts. Numerous research programs have focused on their structural elucidation and total synthesis since the seventies. As a consequence, the number of established chiral centres and the similarity between different naturally occurring substances is increasingly higher. Most of these compounds have a terpenoid nature, mainly diterpene and sesterterpene, with several peculiar structural features, such as the loss of one carbon atom. Although there are many reviews dealing with the occurrence of marine peroxides, their activities, or potential pharmaceutical uses, no one has focused on those having a terpene origin and the endoperoxide function. We present here a comprehensive review of these compounds paying special attention to their structural features and their biological activity.


2020 ◽  
Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


Author(s):  
Bhagwati Gauni ◽  
Krunal Mehariya ◽  
Anamik Shah ◽  
Srinivas Murty Duggirala

: Substituted tetralones have played a substantial role in organic synthesis due to their strong reactivity and suitability as a starting material for a range of synthetic heterocyclic compounds, pharmaceuticals along with biological activities as well as precursors of many natural products and their derivatives. Many α-tetralone derivatives are building blocks, that have been used in the synthesis of therapeutically functional compounds like some antibiotics, antidepressants, acetylcholinesterase inhibitors effective for treating Alzheimer’s disease and alkaloids possessing antitumor activity. In this review, there has been an attempt to explore the small molecule library having α-tetralone scaffold along with their diverse biological activities. Structural features of α-tetralone derivatives responsible for potential therapeutic applications are also described.


2016 ◽  
Vol 55 (12) ◽  
pp. 5886-5894 ◽  
Author(s):  
Sabina W. Jaros ◽  
M. Fátima C. Guedes da Silva ◽  
Magdalena Florek ◽  
Piotr Smoleński ◽  
Armando J. L. Pombeiro ◽  
...  

Author(s):  
Yizhaq Engelberg ◽  
Meytal Landau

Protein fibrils that perform biological activities present attractive biomaterials. Here we demonstrate, by crystal structures, the self-assembly of the antibacterial human LL-37 active core (residues 17-29) into a stable structure of densely packed helices. The surface of the fibril encompasses alternating hydrophobic and positively charged zigzagged belts, which likely underlie interactions with and subsequent disruption of negatively charged lipid bilayers, such as bacterial membranes. LL-3717-29 correspondingly formed wide, ribbon-like, thermostable fibrils in solution, which co-localized with bacterial cells, and structure-guided mutagenesis analyses supported the role of self-assembly in antibacterial activity. LL-3717-29 resembled, in sequence and in the ability to form amphipathic helical fibrils, the bacterial cytotoxic PSMα3 peptide that assembles into cross-α amyloid fibrils. This suggests helical, self-assembling, basic building blocks across kingdoms of life and point to potential structural mimicry mechanisms. The findings offer a scaffold for functional and durable nanostructures for a wide range of medical and technological applications.


Sign in / Sign up

Export Citation Format

Share Document