scholarly journals Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6123
Author(s):  
Fa-Wei Xu ◽  
Ying-Li Lv ◽  
Yu-Fan Zhong ◽  
Ya-Nan Xue ◽  
Yong Wang ◽  
...  

Epigallocatechin gallate (EGCG) is associated with various health benefits. In this review, we searched current work about the effects of EGCG and its wound dressings on skin for wound healing. Hydrogels, nanoparticles, micro/nanofiber networks and microneedles are the major types of EGCG-containing wound dressings. The beneficial effects of EGCG and its wound dressings at different stages of skin wound healing (hemostasis, inflammation, proliferation and tissue remodeling) were summarized based on the underlying mechanisms of antioxidant, anti-inflammatory, antimicrobial, angiogenesis and antifibrotic properties. This review expatiates on the rationale of using EGCG to promote skin wound healing and prevent scar formation, which provides a future clinical application direction of EGCG.

Author(s):  
Chen-Chen Zhao ◽  
Lian Zhu ◽  
Zheng Wu ◽  
Rui Yang ◽  
Na Xu ◽  
...  

Abstract Scar formation seriously affects the repair of damaged skin especially in adults and the excessive inflammation has been considered as the reason. The self-assembled peptide-hydrogels are ideal biomaterials for skin wound healing due to their similar nanostructure to natural extracellular matrix, hydration environment and serving as drug delivery systems. In our study, resveratrol, a polyphenol compound with anti-inflammatory effect, is loaded into peptide-hydrogel (Fmoc-FFGGRGD) to form a wound dressing (Pep/RES). Resveratrol is slowly released from the hydrogel in situ, and the release amount is controlled by the loading amount. The in vitro cell experiments demonstrate that the Pep/RES has no cytotoxicity and can inhibit the production of pro-inflammatory cytokines of macrophages. The Pep/RES hydrogels are used as wound dressings in rat skin damage model. The results suggest that the Pep/RES dressing can accelerate wound healing rate, exhibit well-organized collagen deposition, reduce inflammation and eventually prevent scar formation. The Pep/RES hydrogels supply a potential product to develop new skin wound dressings for the therapy of skin damage.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2535
Author(s):  
Katarína Valachová ◽  
Ladislav Šoltés

Chitosan, industrially acquired by the alkaline N-deacetylation of chitin, belongs to β-N-acetyl-glucosamine polymers. Another β-polymer is hyaluronan. Chitosan, a biodegradable, non-toxic, bacteriostatic, and fungistatic biopolymer, has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes that these two biopolymers have a mutual impact on skin wound healing as skin wound dressings and carriers of remedies.


Planta Medica ◽  
2020 ◽  
Vol 86 (05) ◽  
pp. 348-355 ◽  
Author(s):  
Soo Min Park ◽  
Kyung Jong Won ◽  
Dae Il Hwang ◽  
Do Yoon Kim ◽  
Ha Bin Kim ◽  
...  

Abstract Digitaria ciliaris is widely reported to be a problematic weed in agricultural areas and is mainly used as an indicator plant for the development of herbicides. However, its bioactivities on skin regeneration and wound healing have not been investigated. In the present study, we investigated the effects of D. ciliaris flower absolute on skin wound healing and skin regeneration-related events, that is, proliferation, migration, and collagen biosynthesis, in human fibroblasts and keratinocytes. For this study, we extracted absolute from the D. ciliaris flower by solvent extraction and identified the composition of D. ciliaris flower absolute using GC/MS analysis. We also tested the effect of D. ciliaris flower absolute in CCD986sk fibroblasts and/or HaCaT keratinocytes using the WST assay and 5-bromo-2′-deoxyuridine incorporation assay, Boyden chamber assay, ELISA, sprouting assay, and immunoblotting. GC/MS analysis of D. ciliaris flower absolute revealed that it contained 15 compounds. The absolute increased the proliferations of keratinocytes and fibroblasts and the migration of fibroblasts but did not affect cell viabilities. In addition, it enhanced the syntheses of type I and IV collagen in fibroblasts, but not in keratinocytes. The sprouting assay showed increased sprout outgrowth of fibroblasts. In addition, D. ciliaris flower absolute induced the phosphorylation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in fibroblasts. These results indicate that D. ciliaris flower absolute may promote skin wound healing/regeneration by inducing the proliferation, migration, and collagen synthesis of fibroblasts, as well as the proliferation of keratinocytes. Therefore, D. ciliaris flower absolute may be a potential natural source for cosmetic or pharmaceutical agents that promote skin wound healing/regeneration.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1520
Author(s):  
Hiromasa Tanno ◽  
Emi Kanno ◽  
Shiho Kurosaka ◽  
Yukari Oikawa ◽  
Takumi Watanabe ◽  
...  

Lactic acid bacteria (LAB) are known to have beneficial effects on immune responses when they are orally administered as bacterial products. Although the beneficial effects of LAB have been reported for the genera Lactobacillus and Lactococcus, little has been uncovered on the effects of the genus Enterococcus on skin wound-healing. In this study, we aimed to clarify the effect of heat-killed Enterococcus faecalis KH2 (heat-killed KH2) strain on the wound-healing process and to evaluate the therapeutic potential in chronic skin wounds. We analyzed percent wound closure, re-epithelialization, and granulation area, and cytokine and growth factor production. We found that heat-killed KH2 contributed to the acceleration of re-epithelialization and the formation of granulation tissue by inducing tumor necrosis factor-α, interleukin-6, basic fibroblast growth factor, transforming growth factor (TGF)-β1, and vascular endothelial growth factor production. In addition, heat-killed KH2 also improved wound closure, which was accompanied by the increased production of TGF-β1 in diabetic mice. Topical administration of heat-killed KH2 might have therapeutic potential for the treatment of chronic skin wounds in diabetes mellitus. In the present study, we concluded that heat-killed KH2 promoted skin wound-healing through the formation of granulation tissues and the production of inflammatory cytokines and growth factors.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2029
Author(s):  
Marek Konop ◽  
Mateusz Rybka ◽  
Adrian Drapała

Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials’ properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 147
Author(s):  
Raquel Costa ◽  
Luís Costa ◽  
Ilda Rodrigues ◽  
Catarina Meireles ◽  
Raquel Soares ◽  
...  

There is a great demand for the development of novel wound dressings to overcome the time and costs of wound care performed by a vast number of clinicians, especially in the current overburdened healthcare systems. In this study, Cyanoflan, a biopolymer secreted by a marine unicellular cyanobacterium, was evaluated as a potential biomaterial for wound healing. Cyanoflan effects on cell viability, apoptosis, and migration were assessed in vitro, while the effect on tissue regeneration and biosafety was evaluated in healthy Wistar rats. The cell viability and apoptosis of fibroblasts and endothelial cells was not influenced by the treatment with different concentrations of Cyanoflan, as observed by flow cytometry. Moreover, the presence of Cyanoflan did not affect cell motility and migratory capacity, nor did it induce reactive oxygen species production, even revealing an antioxidant behavior regarding the endothelial cells. Furthermore, the skin wound healing in vivo assay demonstrated that Cyanoflan perfectly adapted to the wound bed without inducing systemic or local oxidative or inflammatory reaction. Altogether, these results suggest that Cyanoflan is a promising biopolymer for the development of innovative applications to overcome the many challenges that still exist in skin wound healing.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ting-Yung Kuo ◽  
Chao-Cheng Huang ◽  
Shyh-Jou Shieh ◽  
Yu-Bin Wang ◽  
Ming-Jen Lin ◽  
...  

AbstractAn appropriate animal wound model is urgently needed to assess wound dressings, cell therapies, and pharmaceutical agents. Minipig was selected owing to similarities with humans in body size, weight, and physiological status. Different wound sizes (0.07–100 cm2) were created at varying distances but fail to adequately distinguish the efficacy of various interventions. We aimed to resolve potential drawbacks by developing a systematic wound healing system. No significant variations in dorsal wound closure and contraction were observed within the thoracolumbar region between boundaries of both armpits and the paravertebral region above rib tips; therefore, Lanyu pigs appear suitable for constructing a reliable dorsal wound array. Blood flow signals interfered with inter-wound distances ˂ 4 cm; a distance > 4 cm is therefore recommended. Wound sizes ≥ 4 cm × 4 cm allowed optimal differentiation of interventions. Partial- (0.23 cm) and full-thickness (0.6 cm) wounds showed complete re-epithelialization on days 13 and 18 and strongest blood flow signals at days 4 and 11, respectively. Given histological and tensile strength assessments, tissue healing resembling normal skin was observed at least after 6 months. We established some golden standards for minimum wound size and distance between adjacent wounds for effectively differentiating interventions in considering 3R principles.


Sign in / Sign up

Export Citation Format

Share Document