miscanthus sinensis
Recently Published Documents


TOTAL DOCUMENTS

349
(FIVE YEARS 83)

H-INDEX

34
(FIVE YEARS 4)

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
David S. Howlett ◽  
J. Ryan Stewart ◽  
Jun Inoue ◽  
Masanori Saito ◽  
DoKyoung Lee ◽  
...  

Miscanthus-dominated semi-natural grasslands in Japan appear to store considerable amounts of soil C. To estimate the long-term effect of Miscanthus vegetation on the accumulation of soil carbon by soil biota degradation in its native range, we measured total soil C from the surface to a 1.2 m depth along a catena toposequence in three annually burned grasslands in Japan: Kawatabi, Soni, and Aso. Soil C stock was estimated using a radiocarbon age and depth model, resulting in a net soil C accumulation rate in the soil. C4-plant contribution to soil C accumulation was further estimated by δ13C of soil C. The range of total soil C varied among the sites (i.e., Kawatabi: 379–638 Mg, Soni: 249–484, and Aso: 372–408 Mg C ha−1). Catena position was a significant factor at Kawatabi and Soni, where the toe slope soil C accumulation exceeded that of the summit. The soil C accumulation rate of the whole horizon in the grasslands, derived C mainly from C4 plant species, was 0.05 ± 0.02 (Average ± SE), 0.04 ± 0.00, and 0.24 ± 0.04 Mg C ha−1 yr−1 in Kawatabi, Soni, and Aso, respectively. Potential exists for long-term sequestration of C under M. sinensis, but the difference in the C accumulation rate can be influenced by the catena position and the amount of vegetation.


2021 ◽  
Author(s):  
Raphael Raverdy ◽  
Emilie Mignot ◽  
Stéphanie Arnoult ◽  
Laura Fingar ◽  
Guillaume Bodineau ◽  
...  

Abstract Traits for biomass production and composition make Miscanthus a promising bioenergy crop for different bioconversion routes. They need to be considered in miscanthus breeding programs as they are subjected to genetic and genetic x environment factors. The objective was to estimate the genetic parameters of an M. sinensis population grown during four years in two French locations. In each location, the experiment was established according to a staggered-start design in order to decompose the year effect into age and climate effects. Linear Mixed Models were used to estimate genetic variance, genotype x age, genotype x climate interaction variances and residual variances. Individual plant broad-sense heritability means ranged from 0.42 to 0.62 for biomass production traits, and were more heritable than biomass composition traits with means ranging from 0.26 to 0.47. Heritability increased through time for most of the biomass production and composition traits. Low genetic variance along with large genotype x age and genotype x climate interaction variances tended to decrease the heritability of biomass production traits for young plant ages. Most of the production traits showed large interaction variances for age and climate in both locations, while biomass composition traits highlighted large interaction variances due to climate in Orléans. The genetic and phenotypic correlations between biomass production and composition traits were moderate and positive, while hemicelluloses were negatively correlated with all traits. Efficient genetic progress is achievable for miscanthus breeding when plants get older. The joint improvement of biomass production and composition traits would help provide a better response of miscanthus to selection.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Alina Avanesyan ◽  
William O. Lamp

Introduced grasses can aggressively expand their range and invade native habitats, including protected areas. Miscanthus sinensis is an introduced ornamental grass with 100+ cultivars of various invasive potential. Previous studies have demonstrated that the invasive potential of M. sinensis cultivars may be linked to seed viability, and some of the physiological traits, such as growth rate. Little is known, however, about whether these traits are associated with response of M. sinensis to insect herbivory, and whether plant tolerance and resistance to herbivory vary among its cultivars; which, in turn, can contribute to the invasive potential of some of M. sinensis cultivars. To address this issue, in our study we explored the response of five cultivars of M. sinensis to herbivory by Melanoplus grasshoppers. We demonstrated that plant responses varied among the cultivars during a season; all the cultivars, but “Zebrinus”, demonstrated a significant increase in plant tolerance by the end of the growing season regardless of the amount of sustained leaf damage. Different patterns in plant responses from “solid green” and “striped/spotted” varieties were recorded, with the lowest plant resistance detected for “Autumn Anthem” in the cage experiment. Our results have important applications for monitoring low-risk invaders in protected areas, as well as for biotic resistance of native communities to invasive grasses.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Tzu-Ya Weng ◽  
Taiken Nakashima ◽  
Antonio Villanueva-Morales ◽  
J. Ryan Stewart ◽  
Erik J. Sacks ◽  
...  

Miscanthus, a high-yielding, warm-season C4 grass, shows promise as a potential bioenergy crop in temperate regions. However, drought may restrain productivity of most genotypes. In this study, total 29 Miscanthus genotypes of East-Asian origin were screened for drought tolerance with two methods, a dry-down treatment in two locations and a system where soil moisture content (SMC) was maintained at fixed levels using an automatic irrigation system in one location. One genotype, Miscanthus sinensis PMS-285, showed relatively high drought-tolerance capacity under moderate drought stress. Miscanthus sinensis PMS-285, aligned with the M. sinensis ‘Yangtze-Qinling’ genetic cluster, had relatively high principal component analysis ranking values in both two locations experiments, Hokkaido University and Brigham Young University. Genotypes derived from the ‘Yangtze-Qinling’ genetic cluster showed relatively greater photosynthetic performance than other genetic clusters, suggesting germplasm from this group could be a potential source of drought-tolerant plant material. Diploid genotypes showed stronger drought tolerance than tetraploid genotypes, suggesting ploidy could be an influential factor for this trait. Of the two methods, the dry-down treatment appears more suitable for selecting drought-tolerant genotypes given that it reflects water-stress conditions in the field. However, the fixed-SMC experiment may be good for understanding the physiological responses of plants to relatively constant water-stress levels.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8368
Author(s):  
Evgeny Chupakhin ◽  
Olga Babich ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Ekaterina Budenkova ◽  
...  

The lignocellulosic perennial crop miscanthus, especially Miscanthus × giganteus, is particularly interesting for bioenergy production as it combines high biomass production with low environmental impact. However, there are several varieties that pose a hazard due to susceptibility to disease. This review contains links showing genotype and ecological variability of important characteristics related to yield and biomass composition of miscanthus that may be useful in plant breeding programs to increase bioenergy production. Some clones of Miscanthus × giganteus and Miscanthus sinensis are particularly interesting due to their high biomass production per hectare. Although the compositional requirements for industrial biomass have not been fully defined for the various bioenergy conversion processes, the lignin-rich species Miscanthus × giganteus and Miscanthus sacchariflorus seem to be more suitable for thermochemical conversion processes. At the same time, the species Miscanthus sinensis and some clones of Miscanthus × giganteus with low lignin content are of interest for the biochemical transformation process. The species Miscanthus sacchariflorus is suitable for various bioenergy conversion processes due to its low ash content, so this species is also interesting as a pioneer in breeding programs. Mature miscanthus crops harvested in winter are favored by industrial enterprises to improve efficiency and reduce processing costs. This study can be attributed to other monocotyledonous plants and perennial crops that can be used as feedstock for biofuels.


2021 ◽  
Author(s):  
Zacharie Leblanc ◽  
Marie-Emilie Gauthier ◽  
Ruvini Lelwala ◽  
Candace Elliott ◽  
Cassie McMaster ◽  
...  

Abstract Here, we describe the full-length genome sequence of a novel potyvirus, tentatively named “miscanthus sinensis mosaic virus” (MsiMV), isolated from Miscanthus sinensis (silver grass) held in a post entry quarantine facility following its initial import into Western Australia, Australia. The MsiMV genome encompasses 9604 nucleotides (nt) encoding a 3071 amino acids (aa) polyprotein with conserved sequence motifs. The MsiMV genome is most closely related to sorghum mosaic virus (SrMV) with 74% nt and 78.5% aa sequence identity to the SrMV polyprotein region. Phylogenetic analysis based on the polyprotein grouped MsiMV with SrMV, sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV). This is the first report of a novel monopartite ssRNA virus in Miscanthus sinensis related to members of the genus Potyvirus in the family Potyviridae.


2021 ◽  
Vol 22 (22) ◽  
pp. 12395
Author(s):  
Philippe Golfier ◽  
Olga Ermakova ◽  
Faride Unda ◽  
Emily K. Murphy ◽  
Jianbo Xie ◽  
...  

Cell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as a renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. In Miscanthus leaves, MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. The ectopic expression of MsSCM1 and MsMYB103 in N. benthamiana leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin compositions. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed an extensive overlap with the response to the NAC master transcription factor MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Furthermore, conserved and previously described promoter elements as well as novel and specific motifs could be identified from the target genes of the three transcription factors. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards a tailored biomass.


Bioenergy ◽  
2021 ◽  
Author(s):  
M. V. Roik ◽  
N. S. Kovalchuk ◽  
O. A. Zinchenko ◽  
M. Ya. Humentyk ◽  
H. S. Honcharuk

Goal. Expanding the breeding trait collection of breeding genotypes of the genus Miscanthus (Anderson) and the genetic basis for new allotriploid clones by transferring components for hybridization of natural wild species Miscanthus sinensis and Miscanthus sacchariflorus to the tetraploid level. Methods. Cytological, biotechnological, fluorescent cytphotometry, field, laboratory. Results. The efficiency of polyploidisation for induction of new tetraploid forms of miscanthus in liquid nutrient media supplemented with colchicine (0.05% mass) and for stabilization of myxoploid shoots (0.005% mass) for 6 h of cultivation is examined. The period of exposure for Miscanthus sinensis (2x=2x= 38) and Miscanthus sacchariflorus (2x = 2x = 38) varied from 2 hours to 3 days depending on the genetic origin of the material, with transfer to a hormonal environment. The best indicators of tetraploid induction for Miscanthus sinensis were observed for the exposure period of 2 days with polyploidization efficiency (Db%) of 31.25% and 21.42%, and for Miscanthus sacchariflorus 2 and 6 hours with 35.0% and 27.3%, respectively. The technology of transfering rooted shoots into the soil on the Yaltushkiv Eperimental Breeding Farm was improved and the composition of the soil mixture that provided 99% rooting of culture seedlings at a humidity of 60−70% and air temperature of 35−55°С was found. Conclusions. New biotechnological tetraploid lines of Miscanthus sinensis (2xn=4x=76) and Miscanthus sacchariflorus (2xn=4x=76) were created in the conditions of liquid nutrient media supplemented with colchicine (0.05 % mass). It is investigated that flowering of new tetraploid clones in the conditions of Ukraine for the second year of vegetation occurs from late September to early October with formation of fertile pollen grains.


Author(s):  
Larissa C. Costa ◽  
Xiaojun Hu ◽  
Martha Malapi-Wight ◽  
Mary O’Connell ◽  
Leticia M. Hendrickson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document