scholarly journals Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6430
Author(s):  
Christian J. Wijaya ◽  
Suryadi Ismadji ◽  
Hakun W. Aparamarta ◽  
Setiyo Gunawan

Due to its excellency and versatility, many synthesis methods and conditions were developed to produce HKUST-1 ([Cu3(BTC)2(H2O)3]n). However, the diversity of HKUST-1 was actually generated both in terms of characteristics and morphologies. Hence, the consistency of HKUST-1 characteristics and morphologies needs to be maintained. The statistical analysis and optimization provide features to determine the best synthesis condition. Here, a room-temperature coordination modulation method was proposed to maintain the morphology of HKUST-1 while reducing energy consumption. In addition, response surface methodology (RSM) was used to demonstrate the statistical analysis and optimization of the synthesis of HKUST-1. The molar ratio of ligand to metal, reaction time, and acetic acid concentration were studied to determine their effects on HKUST-1. The optimum HKUST-1 was obtained by the synthesis with a molar ratio of ligand to metal of 0.4703 for 27.2 h using 5% v/v acetic acid concentration. The statistical analysis performed a good agreement with the experimental data and showed the significance of three desired parameters on HKUST-1. The optimum HKUST-1 had the adsorption capacity of 1005.22 mg/g with a removal efficiency of 92.31% towards CV dye. It could be reused up to 5 cycles with insignificant decrease in performance.

Author(s):  
Bao Zhang ◽  
Yunzhong Chen ◽  
Xuefei Wei ◽  
Mingqi Li ◽  
Mengjin Wang

The effects of liquid-solid ratio, acetic acid concentration and extraction time on the yield of acid-soluble collagen(ASC) from the swim bladders of grass carp were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize the yield of ASC by implementing the Box-Wilson design. Statistical analysis of the results showed that the linear and quadric terms of these three variables had significant effects. However, no interactions between the three variables were found to contribute to the response at a significant level. The optimal conditions for higher yield of ASC were a liquid-solid ratio of 17.85, an acetic-acid concentration of 0.54 M and a time of 34 h. Under these conditions, the model predicted an ASC yield of 8.39%. Verification of the optimization showed that an ASC yield of 8.21±0.15% was observed under the optimal conditions. The experimental values agreed with the predicted values, using analysis of variance, indicating an excellent fit of the model used and the success of response surface methodology for modeling extraction of ASC from the swim bladders of grass carp.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Kanako Omori ◽  
Hiroki Miyakawa ◽  
Aya Watanabe ◽  
Yuki Nakayama ◽  
Yijin Lyu ◽  
...  

Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.


2009 ◽  
Vol 43 (2) ◽  
pp. 203-207 ◽  
Author(s):  
Ke-Ke Cheng ◽  
Jian-An Zhang ◽  
Hong-Zhi Ling ◽  
Wen-Xiang Ping ◽  
Wei Huang ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Candra Purnawan ◽  
Edi Pramono ◽  
Purwanto Purwanto

<p>The research on the effect of chloro acetic concentration and temperature reaction of carboxymethyl chitosan formation on cation exchange capacity and thermal stability of polymer have been done. Carboxymethyl chitosan was synthesized by reaction of chitosan and chloro acetic acid with NaOH as catalyst. Polymer was characterized by Fourier Transform Infrared Spectrofotometer, cation exchange capacity test, and thermal analysis with thermogravimetric method. Carboxymethyl chitosan has strong FTIR adsorption of carboxyl group (-COO-) in 1606,70 cm<sup>-1</sup> and 1444,68 cm<sup>-1</sup>. The increasing of chloro acetic acid concentration and reaction temperature decreased cation exchage capacity and changed thermal stability of polymer.</p>


2020 ◽  
Author(s):  
Zachary G. Davis ◽  
Aasim F. Hussain ◽  
Matthew B. Fisher

AbstractSeveral biofabrication methods are being investigated to produce scaffolds that can replicate the structure of the extracellular matrix. Direct-write, near-field electrospinning of polymer solutions and melts is one such method which combines fine fiber formation with computer-guided control. Research with such systems has focused primarily on synthetic polymers. To better understand the behavior of biopolymers used for direct-writing, this project investigated changes in fiber morphology, size, and variability caused by varying gelatin and acetic acid concentration, as well as, process parameters such as needle gauge and height, stage speed, and interfiber spacing. Increasing gelatin concentration at a constant acetic acid concentration improved fiber morphology from large, planar structures to small, linear fibers with a median of 2.3 µm. Further varying the acetic acid concentration at a constant gelatin concentration did not alter fiber morphology and diameter throughout the range tested. Varying needle gauge and height further improved the median fiber diameter to below 2 µm and variability of the first and third quartiles to within +/-1 µm of the median for the optimal solution combination of gelatin and acetic acid concentrations. Additional adjustment of stage speed did not impact the fiber morphology or diameter. Repeatable interfiber spacings down to 250 µm were shown to be capable with the system. In summary, this study illustrates the optimization of processing parameters for direct-writing of gelatin to produce fibers on the scale of collagen fibers. This system is thus capable of replicating the fibrous structure of musculoskeletal tissues with biologically relevant materials which will provide a durable platform for the analysis of single cell-fiber interactions to help better understand the impact scaffold materials and dimensions have on cell behavior.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 565 ◽  
Author(s):  
Norman Toro ◽  
Nelson Herrera ◽  
Jonathan Castillo ◽  
Cynthia Torres ◽  
Rossana Sepúlveda

In this study, the surface optimization methodology was used to assess the effect of three independent variables—time, particle size and sulfuric acid concentration—on Mn extraction from marine nodules during leaching with H2SO4 in the presence of foundry slag. The effect of the MnO2/Fe ratio and particle size (MnO2) was also investigated. The maximum Mn extraction rate was obtained when a MnO2 to Fe molar ratio of 0.5, 1 M of H2SO4, −320 + 400 Tyler mesh (−47 + 38 μm) nodule particle size and a leaching time of 30 min were used.


2019 ◽  
Vol 964 ◽  
pp. 209-214
Author(s):  
Elly Agustiani ◽  
Atiqa Rahmawati ◽  
Fibrillian Zata Lini ◽  
Dimas Luthfi Ramadhani

Siwalan (Borassus flabellifer L.) is a palm family that is widely planted in the Tuban area of ​​East Java. Siwalan sap has a relatively high sugar content of about 10-15 g / 100 ml. The sap is obtained by tapping the inflorescences. In general, siwalan sap is used for fresh drinks or alcoholic beverages with maximum storage in 3 days. Based on the sugar content in the sap of siwalan, acetic acid products can be made through fermentation of glucose to ethanol, then the ethanol is fermented into acetic acid. Acetic acid is widely used as a preservative of food and health drinks. The purpose of this research is to study the effect of ethanol fermentation aerobic pH on acetic acid product. Anaerobic fermentation uses saccharomyces cereviceae to produce ethanol, and aerobic fermentation uses acetobacter aceti for acetic acid production. In aerobic ethanol fermentation using pH 3; 3.5; 4 and 5. The concentration of ethanol was analyzed using GC ULTRA Scientific Gas Chromatography, DSQ II detector, and MS 220 column. Acetic acid produced from the aerobic fermentation process was analyzed using an alkalimetric method. Anaerobic fermentation uses Saccharomyces cereviceae with 1-day log phase, while aerobic fermentation uses acetobacter aceti with a 5 day log phase. Aerobic fermentation to produce acetic acid was observed in 5 days to obtained maximum acetic acid concentration, the highest acetic acid concetration is about 2.595 g/l and yield of acetic acid is obtained 0.519% (b/v) at pH 5. Low acetic acid concentration due to low intitial sugar content in siwalan sap.


2005 ◽  
Vol 19 (30) ◽  
pp. 4467-4473 ◽  
Author(s):  
XIAO-BO YUAN ◽  
YI-HUA LIU ◽  
CHENG-JIAN WANG ◽  
LIANG-MO MEI

The effects of Ag addition in the composite ( La 0.7 Sm 0.3)0.7 Sr 0.3 MnO 3/ Ag x (abbreviated as LSSMO/Ag x) has been studied. The results showed that Ag addition induces the decrease in resistivity (ρ) due to the improvement of grain boundaries resulted from the segregation of Ag on the grain surfaces. In addition, 27% molar ratio of Ag addition induces a large room temperature magnetoresistance (MR) ratio of 35%. The good agreement of experimental data with Brillouin function indicates that the MR behavior in this composite system accounts for the spin-dependent hopping of the electrons between the spin clusters.


Sign in / Sign up

Export Citation Format

Share Document