scholarly journals Peanut Shell Derived Carbon Combined with Nano Cobalt: An Effective Flame Retardant for Epoxy Resin

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6662
Author(s):  
Jing Liang ◽  
Wenhao Yang ◽  
Anthony Chun Yin Yuen ◽  
Hu Long ◽  
Shuilai Qiu ◽  
...  

Biomass-derived carbon has been recognised as a green, economic and promising flame retardant (FR) for polymer matrix. In this paper, it is considered that the two-dimensional (2D) structure of carbonised peanut shells (PS) can lead to a physical barrier effect on polymers. The carbonised sample was prepared by the three facile methods, and firstly adopted as flame retardants for epoxy resin. The results of thermal gravimetric analysis (TGA) and cone calorimeter tests indicate that the carbon combined with nano Cobalt provides the most outstanding thermal stability in the current study. With 3 wt.% addition of the FR, both peak heat release rate (pHRR) and peak smoke production rate (PSPR) decrease by 37.9% and 33.3%, correspondingly. The flame retardancy mechanisms of the FR are further explored by XPS and TG-FTIR. The effectiveness of carbonised PS can be mainly attributed to the physical barrier effect derived by PS’s 2D structure and the catalysis effect from Cobalt, which contribute to form a dense char layer.

2019 ◽  
Vol 37 (2) ◽  
pp. 137-154 ◽  
Author(s):  
Xi Cheng ◽  
Jianming Wu ◽  
Yulin Li ◽  
Chenguang Yao ◽  
Guisheng Yang

Aluminum hypophosphite combined with melamine cyanurate and poly(phenylene oxide) was applied to flame-retard TPE-S system (blends of SEBS and polyolefin). The flame-retardant properties of the TPE-S/AHP/MCA/PPO were investigated by LOI and vertical burning test (UL-94). The results indicated that TPE-S containing 16 wt% AHP, 20 wt% MCA, and 10 wt% PPO reached a V-0 rating in the UL-94 test, and its LOI value was 28.2%. It performed well in the cone calorimeter (reduction in peak heat release rate from 2001 to 494 kW m−2). Thermogravimetric-Fourier transform infrared spectroscopy tests showed that AHP and MCA acted in gaseous phase, while AHP and PPO helped to form char residue. The SEM graphs demonstrated that continuous and compact films cover bubbles of the char layer in TPE-S/AHP/MCA/PPO. The proposed flame-retardant mechanisms of such systems were summarized.


2020 ◽  
Vol 38 (6) ◽  
pp. 485-503
Author(s):  
Benjamin Tawiah ◽  
Bin Yu ◽  
Anthony Chun Yin Yuen ◽  
Bin Fei

The demand for environmentally benign flame retardants for biodegradable polymers has become particularly necessary due to their inherently “green” nature. This work reports intrinsically non-toxic polydopamine (PDA) particles as an efficient and environmentally friendly flame retardant for polylactic acid (PLA). 5 wt% PDA loading resulted in a 22% reduction in the peak heat release rate, 34.7% increase in the fire performance index, and lower CO2 production compared to neat PLA. A limiting oxygen index (LOI) value of 27.5% and a V-2 rating was achieved in the UL-94 vertical burning test. Highly aggregated amorphous particulate char was formed with the increasing content of PDA, and a significant reduction in evolved pyrolysis gaseous products was achieved for the PLA/PDA composites as compared with control PLA. This work provides important insight into the potential commercial application of PDA alone as an efficiently green, environmentally benign flame retardant for bioplastic PLA.


2011 ◽  
Vol 415-417 ◽  
pp. 424-428 ◽  
Author(s):  
Xiang Zhang ◽  
Fan Zhang

A novel phosphor-nitrogen intumescent flame retardant was prepared by dry method (without adding any solvent) using H3PO4, P2O5, pentaerythritol and melamine as raw materials. IR analysis found that the synthetic flame retardants had the P=O and P-O-C double-ring structures, the same to phosphate ester melamine salts. The reaction temperature, time and the ratio of raw materials had significant effect on the esterification reaction. The esterification reaction temperature should be controlled between 120°C and 130°C, and the reaction time should be 2.5 hours. The conversion rate of esterification could be improved by adding P2O5 to the reaction, and preferential mole rate between H3PO4 and P2O5 should be 2:1. Thermogravimetric analysis showed that the starting decomposition temperature of the flame retardant was 190°C, and at 700°C, the residual char rate was about 30%. The expansion ratio of the flame retardant after heated was about 30 to 50 times, SEM analysis found that the exteral surface of the expansion char layer was continuous and smooth, and the interior of the expansion char layer was uniformly porous structures, and the aperture size was about 150-200 μm, such porous structures could provide better adiabatic effect.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2900
Author(s):  
Linyuan Wang ◽  
Yue Wei ◽  
Hongbo Deng ◽  
Ruiqi Lyu ◽  
Jiajie Zhu ◽  
...  

Recently, widespread concern has been aroused on environmentally friendly materials. In this article, barium phytate (Pa-Ba) was prepared by the reaction of phytic acid with barium carbonate in deionized water, which was used to blend with intumescent flame retardant (IFR) as a flame retardant and was added to epoxy resin (EP). Afterward, the chemical structure and thermal stability of Pa-Ba were characterized by Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA), respectively. On this basis, the flammability and flame retardancy of EP composites were researched. It is shown that EP/14IFR/2Ba composite has the highest limiting oxygen index (LOI) value of 30.7%. Moreover, the peak heat release rate (PHRR) of EP/14IFR/2Ba decreases by 69.13% compared with pure EP. SEM and Raman spectra reveal the carbonization quality of EP/14IFR/2Ba is better than that of other composites. The results prove that Pa-Ba can cooperate with IFR to improve the flame retardancy of EP, reducing the addition amount of IFR in EP, thus expanding the application range of EP. In conclusion, adding Pa-Ba to IFR is a more environmentally friendly and efficient method compared with others.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4216
Author(s):  
Peixin Yang ◽  
Hanguang Wu ◽  
Feifei Yang ◽  
Jie Yang ◽  
Rui Wang ◽  
...  

In this study, a novel flame retardant (PMrG) was developed by self-assembling melamine and phytic acid (PA) onto rGO, and then applying it to the improvement of the flame resistance of PLA. PMrG simultaneously decreases the peak heat release rate (pHRR) and the total heat release (THR) of the composite during combustion, and enhances the LOI value and the time to ignition (TTI), thus significantly improving the flame retardancy of the composite. The flame retardant mechanism of the PMrG is also investigated. On one hand, the dehydration of PA and the decomposition of melamine in PMrG generate non-flammable volatiles, such as H2O and NH3, which dilute the oxygen concentration around the combustion front of the composite. On the other hand, the rGO, melamine, and PA components in PMrG create a synergistic effect in promoting the formation of a compact char layer during the combustion, which plays a barrier role and effectively suppresses the release of heat and smoke. In addition, the PMrGs in PLA exert a positive effect on the crystallization of the PLA matrix, thus playing the role of nucleation agent.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3496
Author(s):  
Junming Geng ◽  
Jianyu Qin ◽  
Jiyu He

An intercalated organic montmorillonite DOPO-MMT was prepared through the melting method using 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as a modifier. Epoxy resin (EP) composites were prepared with DOPO-MMT, DOPO, MMT, and the physical mixtures of DOPO+MMT as flame retardants. The microstructure of the flame retardants and EP samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The flame retardant properties, thermal stability, and residual char structure of the EPs were studied by the limited oxygen index (LOI) test, the UL-94 vertical burning test, thermogravimetric analysis (TGA), the differential scanning calorimeter (DSC) test, the cone calorimeter (CONE) test as well as other characterization methods. The results showed that the intercalated organic montmorillonite DOPO-MMT can be successfully prepared by the melting method and that the MMT is evenly dispersed in the EP/DOPO-MMT composite in the form of nanosheets. The EP/DOPO-MMT nanocomposites showed the optimal flame retardancy (LOI, UL-94, PHRR, etc.) among the EPs with DOPO, MMT, and the physical mixture of DOPO+MMT. The flame-retardant grade of the material reached V-0.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 74 ◽  
Author(s):  
Haisheng Feng ◽  
Yong Qiu ◽  
Lijun Qian ◽  
Yajun Chen ◽  
Bo Xu ◽  
...  

An aromatic macromolecular polyimide (API) was synthesized and characterized, and used as a synergistic charring flame retardant in glass fiber reinforced polyamide 6 (GF/PA6). API and aluminum diethylphosphinate (ADP) exhibited better flame inhibition behavior and synergistic charring flame retardant behavior compared with ADP alone. The 5%API/7%ADP/GF/PA6 sample achieved the lower peak value of the heat release rate (pk-HRR) at 497 kW/m2 and produced higher residue yields of 36.1 wt.%, verifying that API and ADP have an outstanding synergistic effect on the barrier effect. The API/ADP system facilitated the formation of a carbonaceous, phosphorus and aluminum-containing compact char layer with increased barrier effect. FTIR spectra of the residue and real-time TGA-FTIR analysis on the evolved gases from PA6 composites revealed that API interacted with ADP/PA6 and locked in more P–O–C and P–O–Ar content, which is the main mechanism for improving flame inhibition and charring ability. In addition, the API/ADP system improved the mechanical properties and corrosion resistance of GF/PA6 composites compared to ADP alone.


2019 ◽  
Vol 10 (43) ◽  
pp. 5920-5930 ◽  
Author(s):  
Jens C. Markwart ◽  
Alexander Battig ◽  
Thomas Kuckhoff ◽  
Bernhard Schartel ◽  
Frederik R. Wurm

Hyperbranched polyphosphoesters (hbPPEs) are promising flame retardants. Herein we synthesized the first phosphorus-based AB2 monomer for the synthesis of hbPPEs and assess its flame-retardant performance in an epoxy resin.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 613 ◽  
Author(s):  
Liqiang Gu ◽  
Chen Qiu ◽  
Jianhui Qiu ◽  
Youwei Yao ◽  
Eiichi Sakai ◽  
...  

In this work, functionalized multi-walled carbon nanotubes (MWCNT) were synthesized by the reaction between acylated MWCNT and 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (ODOPB). The obtained MWCNT-ODOPB was well dispersed into epoxy resins together with aluminum diethylphosphinate (AlPi) to form flame-retardant nanocomposites. The epoxy resin nanocomposite with phosphorus content of 1.00 wt % met UL 94 V-0 rating, exhibited LOI value of 39.5, and had a higher Tg compared to neat epoxy resin, which indicates its excellent flame retardant performance. These experimental results indicated that MWCNT-ODOPB was a compatible and efficient flame retardant for epoxy resins. Moreover, cone calorimeter analysis showed that the peak heat release rate (pHRR), total heat release (THR) values, and CO2 production profiles of the composites decreased with an increase in the additional amount of phosphorus.


2011 ◽  
Vol 197-198 ◽  
pp. 1167-1170
Author(s):  
Zhi Ping Wu ◽  
Yun Chu Hu ◽  
Mei Qin Chen

The effect of intumescent flame retardant (IFR) contained microencapsulated red phosphorus on the flame retardance of E-44 epoxy resin (EP) was studied. The test results indicated that good flame retardancy can be realized when epoxy resin treated with 30% IFR. Thermogravimetric analysis showed that the charring amount at high temperature of EP can increase substantially when IFR was incorporated. In order to further explain this phenomenon, Dolye integration method of thermal degradation dynamics was employed to study the thermal degradation process of EP treated with IFR based on the microencapsulated red phosphrous according to the thermal gravimetry analysis results.The activation energy and reactor order of different thermal degradation stages were obtained. The results of thermal degradation dynamics implied the intumescent flame retardants can improve the flame retardance of the epoxy resin through decrease the degradation speed and increase the activation energy of the second thermal degradation stage.


Sign in / Sign up

Export Citation Format

Share Document