scholarly journals Mutagenicity of Tectona grandis Wood Extracts and Their Ability to Improve Carbohydrate Yield for Kraft Cooking Eucalyptus Wood

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7171
Author(s):  
Yulia Anita ◽  
Syelvia Putri Utami ◽  
Hiroshi Ohi ◽  
Evelyn Evelyn ◽  
Akiko Nakagawa-Izumi

Considering the toxicity of the impurities of synthesized anthraquinone, this study clarified new catalytic compounds for kraft cooking with improved carbohydrate yield and delignification and less mutagenicity, which are important for ensuring the safety of paper products in contact with food. The 2-methylanthraquinone contents of teak (Tectona grandis) woods were 0.18–0.21%. Acetone extracts containing 2-methylanthraquinone from Myanmar and Indonesia teak woods as additives improved lignin removal during kraft cooking of eucalyptus wood, which resulted in kappa numbers that were 2.2–6.0 points lower than the absence of additive. Myanmar extracts and 2-methylanthraquinone improved carbohydrate yield in pulps with 1.7–2.2% yield gains. Indonesia extracts contained more deoxylapachol and its isomer than 2-methylanthraquinone. The residual content of 2-methylanthraquinone in the kraft pulp was trace. Although Ames tests showed that the Indonesia and Myanmar extracts were mutagenic to Salmonella typhimurium, 2-methylanthraquinone was not. The kraft pulp obtained with the additives should be safe for food-packaging applications, and the addition of 0.03% 2-methylanthraquinone to kraft cooking saves forest resources and fossil energy in industries requiring increased pulp yield.

TAPPI Journal ◽  
2019 ◽  
Vol 18 (5) ◽  
pp. 287-293 ◽  
Author(s):  
JANNATUN NAYEEM ◽  
M. SARWAR JAHAN ◽  
RAZIA SULTANA POPY ◽  
M. NASHIR UDDIN ◽  
M.A. QUAIYYUM

Jute cutting, jute caddis, and cutting-caddis mixtures were prehydrolyzed by varying time and temperature to get about 90% prehydrolyzed yield. At the conditions of 170°C for 60 min of prehydrolysis, the yield for 100% jute cutting was 76.3%, while the same for jute caddis was only 67.9%. But with prehydrolysis at 150°C for 60 min, the yield was 90% for jute cutting, where 49.94% of original pentosan was dissolved and prehydrolysis of jute caddis at 140°C in 60 min yielded 86.4% solid residue. Jute cutting-caddis mixed prehydrolysis was done at 140°C for 30 min and yielded 92% solid residue for 50:50 cutting-caddis mixtures, where pentosan dissolution was only 29%. Prehydrolyzed jute cutting, jute caddis, and cutting-caddis mixtures were subsequently kraft cooked. Pulp yield was only 40.9% for 100% jute cutting prehydrolyzed at 170°C for 60 min, which was 10.9% lower than the prehydrolysis at 140°C. For jute cutting-caddis mixed prehydrolysis at 140°C for 45 min followed by kraft cooking, pulp yield decreased by 3.3% from the 100% cutting to 50% caddis in the mixture, but 75% caddis in the mixture decreased pulp yield by 6.7%. The kappa number 50:50 cutting-caddis mixture was only 11.3. Pulp bleachability improved with increasing jute cutting proportion in the cutting-caddis mixture pulp.


2019 ◽  
Vol 9 (16) ◽  
pp. 3436 ◽  
Author(s):  
Marc Borrega ◽  
Hannes Orelma

The effects of xylan extraction from birch kraft pulp on the manufacture and properties of cellulose nanofibril (CNF) films were here investigated. Hot water extractions of bleached and unbleached kraft pulps were performed in a flow-through system to remove and recover the xylan. After the extraction, the pulps were oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and fibrillated in a high-pressure microfluidizer. Compared to CNF from bleached kraft pulp, the CNF dispersions obtained from water-extracted pulps were less viscous and generally contained a higher amount of microfiber fragments, although smaller in size. In all cases, however, smooth and highly transparent films were produced from the CNF dispersions after the addition of sorbitol as plasticizer. The CNF films made from water-extracted pulps showed a lower tensile strength and ductility, probably due to their lower xylan content, but the stiffness was only reduced by the presence of lignin. Interestingly, the CNF films from water-extracted bleached pulps were less hydrophilic, and their water vapour permeability was reduced up to 25%. Therefore, hot water extraction of bleached birch kraft pulp could be used to produce CNF films with improved barrier properties for food packaging, while obtaining a high-purity xylan stream for other high-value applications.


2010 ◽  
Vol 18 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Geoffrey M. Downes ◽  
Roger Meder ◽  
Nicholas Ebdon ◽  
Helen Bond ◽  
Robert Evans ◽  
...  

2010 ◽  
Vol 40 (5) ◽  
pp. 917-927 ◽  
Author(s):  
Desmond J. Stackpole ◽  
René E. Vaillancourt ◽  
Geoffrey M. Downes ◽  
Christopher E. Harwood ◽  
Brad M. Potts

Pulp yield is an important breeding objective for Eucalyptus globulus Labill., but evaluation of its genetic control and genetic correlations with other traits has been limited by its high assessment cost. We used near infrared spectroscopy to study genetic variation in pulp yield and other traits in a 16-year-old E. globulus trial. Pulp yield was predicted for 2165 trees from 467 open-pollinated families from 17 geographic subraces. Significant differences between subraces and between families within subraces were detected for all traits. The high pulp yield of southern Tasmanian subraces suggested that their economic worth was previously underestimated. The narrow-sense heritability of pulp yield was medium (0.40). The significant positive genetic correlation between pulp yield and diameter (0.52) was at odds with the generally neutral values reported. The average of the reported genetic correlations between pulp yield and basic density (0.50) was also at odds with our nonsignificant estimate. Pulp yield of the subraces increased with increasing latitude, producing a negative correlation with density (–0.58). The absence of genetic correlations within subraces between pulp yield and density suggests that the correlation may be an independent response of the two traits to the same or different selection gradients that vary with latitude.


2013 ◽  
Vol 750-752 ◽  
pp. 1520-1523
Author(s):  
Hong Xia Gao ◽  
Wen Hua He ◽  
Xiu Qiong Guan ◽  
Chun Liu ◽  
Bo Yuan

The effect of chelating agents Diethylene Triamine Penta Methylene Phosphonic Acid in bamboo kraft cooking was studied. The results show that the bamboo pulp yield was 49.52% when DTPMPA dosage is 0.4%, at the same time the Kappa number was lower. With the increasing of DTPMPA dosage in bamboo kraft pulping, the bamboo pulp strength was increased.


2005 ◽  
Vol 96 (10) ◽  
pp. 1125-1129 ◽  
Author(s):  
P. Mutjé ◽  
M.A. Pèlach ◽  
F. Vilaseca ◽  
J.C. García ◽  
L. Jiménez

2019 ◽  
Vol 34 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Elisabet Brännvall ◽  
Ida Kulander

Abstract Impregnation with high initial concentration is fast and efficient, leading to a homogeneous delignification in the subsequent cook, resulting in improved screened pulp yield. To obtain high initial alkali concentration, the white liquor flow needs to be significantly increased. The moisture content of the wood chips and the alkali concentration of the white liquor limit the initial alkali concentration of the impregnation liquor that can be reached. It is therefore of interest to evaluate the possibility to implement high alkali impregnation (HAI) industrially and the consequences this would have on the mill system. The effect of HAI on mass and energy balances in a kraft pulp mill has been studied using mill model simulations. The sensitivity to disturbances in important parameters for process control has been compared to impregnation scenarios used industrially. It was shown that high initial alkali concentration can be achieved on industrial scale by increased white liquor flow. HAI has a positive effect on recovery flows and reduces the need for make-up chemicals. The HAI concept is less sensitive to variations in process parameters, such as chip moisture and white liquor concentration, thus diminishing the risk of alkali depletion in chip cores.


2017 ◽  
Vol 66 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Inese Sable ◽  
Uldis Grinfelds ◽  
Laura Vikele ◽  
Linda Rozenberga ◽  
Dagnija Lazdina ◽  
...  

AbstractBioenergy, including energy from wood, currently provides about 9–13% of the total global energy supply. Every fibre of fast-growing wood has a value for its potential use as a material in both pulp and paper and wood chemical industries. The aim of this study was to assess the chemical composition and fibre’s properties of fast-growing species in Latvia – aspen, hybrid aspen, lodgepole pine, poplar and willow. Results showed a variation of cellulose, lignin, extractives and ash contents among the species. Kraft pulp yield and amount of residual lignin were measured and properties of pulp fibres determined. Form factor and fine content in pulp were measured. Poplar and aspen wood had the highest content of cellulose, while lodgepole pine had the highest lignin content in wood and the longest kraft pulp fibres. Willow had 20% of fines in pulp. Individual results suggest the most suitable application of each species.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
K. C. Lamounier ◽  
L. C. S. Cunha ◽  
S. A. L. de Morais ◽  
F. J. T. de Aquino ◽  
R. Chang ◽  
...  

Maclura tinctoria(L.) D. Don ex Steud. has one of the highest qualities among the coefficients for Brazilian woods (up to 9.6) and resistance rates equivalent to Indian teak (Tectona grandis). In this study, the macromolecular constituents and total phenols compounds as well as the antioxidant and antibacterial activities of this wood were evaluated. Total phenols and proanthocyanidin levels were higher in wood when compared with bark levels. The antioxidant activity of wood extracts (IC50= 18.7 μg/mL) was more effective than that of bark extracts (IC50= 20.9 μg/mL). Wood and bark extracts revealed a high potential for inhibition of aerobic and anaerobic bacteria. The bark extracts were the most active (MIC from 20 to 60 μg/mL). Both antioxidant activity and high potential for bacteria inhibition turn these extracts promising for drug formulations, especially as antibacterial agent.


2002 ◽  
Vol 32 (1) ◽  
pp. 170-176 ◽  
Author(s):  
C A Raymond ◽  
L R Schimleck

Determining kraft pulp yield in the traditional way is slow and expensive, limiting the numbers of samples that may be processed. An alternative is to use a secondary standard, such as cellulose content of the wood, which is strongly correlated with kraft pulp yield. The feasibility and efficiency of predicting cellulose content using near infrared reflectance (NIR) analysis was examined for Eucalyptus globulus Labill. Calibrations for NIR prediction of cellulose content indicated that NIR analysis could be used as a reliable predictor. Standard errors of calibration were 1% or lower, and there was excellent agreement between laboratory and predicted cellulose values. Cellulose content was under moderate genetic control (h2 ranging from 0.32 to 0.57), and genetic correlations with tree diameter and basic density were variable (ranging from –0.11 to –0.51 and –0.33 to 0.67, respectively). The advantages, disadvantages, and potential applications of NIR analysis for predicting cellulose content are examined.


Sign in / Sign up

Export Citation Format

Share Document