scholarly journals A Content Review of Life Cycle Assessment of Nanomaterials: Current Practices, Challenges, and Future Prospects

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3324
Author(s):  
Nurul Umairah M. Nizam ◽  
Marlia M. Hanafiah ◽  
Kok Sin Woon

This paper provides a comprehensive review of 71 previous studies on the life cycle assessment (LCA) of nanomaterials (NMs) from 2001 to 2020 (19 years). Although various studies have been carried out to assess the efficiency and potential of wastes for nanotechnology, little attention has been paid to conducting a comprehensive analysis related to the environmental performance and hotspot of NMs, based on LCA methodology. Therefore, this paper highlights and discusses LCA methodology’s basis (goal and scope definition, system boundary, life cycle inventory, life cycle impact assessment, and interpretation) to insights into current practices, limitations, progress, and challenges of LCA application NMs. We found that there is still a lack of comprehensive LCA study on the environmental impacts of NMs until end-of-life stages, thereby potentially supporting misleading conclusions, in most of the previous studies reviewed. For a comprehensive evaluation of LCA of NMs, we recommend that future studies should: (1) report more detailed and transparent LCI data within NMs LCA studies; (2) consider the environmental impacts and potential risks of NMs within their whole life cycle; (3) adopt a transparent and prudent characterization model; and (4) include toxicity, uncertainty, and sensitivity assessments to analyze the exposure pathways of NMs further. Future recommendations towards improvement and harmonization of methodological for future research directions were discussed and provided. This study’s findings redound to future research in the field of LCA NMs specifically, considering that the release of NMs into the environment is yet to be explored due to limited understanding of the mechanisms and pathways involved.

2021 ◽  
Vol 108 ◽  
pp. 103309
Author(s):  
Tatiane Tobias da Cruz ◽  
José A. Perrella Balestieri ◽  
João M. de Toledo Silva ◽  
Mateus R.N. Vilanova ◽  
Otávio J. Oliveira ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


2017 ◽  
Vol 1 (1) ◽  
pp. 91-108
Author(s):  
Maurizio Cellura ◽  
Francesco Guarino ◽  
Sonia Longo

The building sector is one of the most relevant in terms of generation of wealth and occupation, but it is also responsible for significant consumption of natural resources and the generation of environmental impacts, mainly greenhouse gas emissions. In order to improve the eco profile of buildings during their life-cycle, the reduction of the use of resources and the minimization of environmental impacts have become, in the last years, some of the main objectives to achieve in the design of sustainable buildings. The application of the life-cycle thinking approach, looking at the whole life cycle of buildings, is of paramount importance for a real decarbonization and reduction of the environmental impacts of the building sector. This paper presents an application of the life-cycle assessment methodology for assessing the energy and environmental life-cycle impacts of a single-family house located in the Mediterranean area in order to identify the building components and life-cycle steps that are responsible of the higher burdens. The assessment showed that the largest impacts are located in the use stage; energy for heating is significant but not dominant, while the contribution of electricity utilized for households and other equipment resulted very relevant. High environmental impacts are also due to manufacture and transport of building materials and components.


2021 ◽  
pp. 0734242X2110179
Author(s):  
Daniela Camana ◽  
Sara Toniolo ◽  
Alessandro Manzardo ◽  
Mirco Piron ◽  
Antonio Scipioni

Life cycle assessment (LCA) and related tools are commonly used to evaluate the potential environmental impacts of waste treatment scenarios. This manuscript presents a mini-review of studies published over the last 10 years in Italy and aims to investigate how life cycle thinking tools are applied to assess the environmental sustainability of local-level waste policies. Results reveal that different waste flows, technologies and policies have been investigated independently and in varying detail. Review suggests that boundary selection significantly affects LCA results; integration of different waste systems is therefore crucial to avoid spatial or temporal shifts of environmental impacts. Moreover, the description of methodological characteristics, limitations and transversal aspects of Italian waste management studies allows various stakeholders to assess the reliability of past and future research for waste policy planning and rebound effects prevention. This review also highlights the need to define minimum requirements of transparency and ease of reporting of the studies to private and public stakeholders. Finally, the paper investigates whether using both the organisational LCA and the life cycle sustainability approach for the overall waste management process may be useful to develop a standard method to address multi-functionalities and multiple sites.


2021 ◽  
Vol 3 (4) ◽  
pp. 1-1
Author(s):  
Poonam Khatri ◽  
◽  
Kamalakanta Sahoo ◽  
Richard Bergman ◽  
Maureen Puettmann ◽  
...  

Raw materials for buildings and construction account for more than 35% of global primary energy use and nearly 40% of energy-related CO2 emissions. The Intergovernmental Panel on Climate Change (IPCC) emphasized the drastic reduction in GHG emissions and thus, wood products with very low or negative carbon footprint materials can play an important role. In this study, a cradle-to-grave life cycle assessment (LCA) approach was followed to quantify the environmental impacts of laminated strand lumber (LSL). The inventory data represented North American LSL production in terms of input materials, including wood and resin, electricity and fuel use, and production facility emissions for the 2019 production year. The contribution of cradle-to-gate life cycle stages was substantial (>70%) towards the total (cradle-to-grave) environmental impacts of LSL. The cradle-to-gate LCA results per m³ LSL were estimated to be 275 kg CO2 eq global warming, 39.5 kg O3eq smog formation, 1.7 kg SO2 eq acidification, 0.2 kg N eq eutrophication, and 598 MJ fossil fuel depletion. Resin production as a part of resource extraction contributed 124 kg CO2 eq (45%). The most relevant unit processes in their decreasing contribution to their cradle-to-grave GW impacts were resource extraction, end-of-life (EoL), transportation (resources and product), and LSL manufacturing. Results of sensitivity analysis showed that the use of adhesive, consumption of electricity, and transport distance had the greatest influences on the LCA results. Considering the whole life cycle of the LSL, the final product stored 1,010 kg CO2 eq/m³ of LSL, roughly two times more greenhouse gas emissions over than what was released (493 kg CO2 eq/m³ of LSL) from cradle-to-grave. Overall, LSL has a negative GW impact and acts as a carbon sink if used in the construction sector. The study results are intended to be important for future studies, including waste disposal and recycling strategies to optimize environmental trade-offs.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9132-9145
Author(s):  
Xiang Yu ◽  
Lizhen Zeng ◽  
Guofang Zhang ◽  
Hankun Wang

Bamboo floorings are the most important industrial products in the bamboo sector. With the aim of providing a useful guide for the development of bamboo floorings, this study quantitatively assessed the environmental impacts of the two primary types of bamboo floorings, laminated flooring and scrimber flooring, using life cycle assessment (LCA) software SimaPro. The purpose of this study was to find out which type of bamboo flooring is more environmentally friendly through quantitatively analyzing the input and output of materials and energy during the whole life cycle of the two types of flooring products. The present study demonstrated that the majority of the environmental burdens were associated with the process of bamboo strip production for bamboo laminated flooring (59.3%), and the process of panel processing for bamboo scrimber floorings (56.9%). In terms of environmental loads, bamboo laminated flooring was considered more sustainable than bamboo scrimber flooring, as the total environmental loads of bamboo scrimber flooring was approximately 1.6 times that of bamboo laminated flooring.


2018 ◽  
Vol 175 ◽  
pp. 04006
Author(s):  
CHEN Wen ◽  
YAN Tao ◽  
CAI Wen ◽  
Yang Hong-yan ◽  
WAN Zhong-hai

The key in the life cycle assessment is how to measure the environmental impacts. In this paper the environmental impacts of power station was measured by the money. Based on the statistic data in all country the environmental impacts cost of power station was concluded, which was combined with the inventory analysis of power station and applied the results of the environmental economics in our country. On this result, it can be further combined with the conventional technical and economic analysis of the power station, which lays a solid foundation for the comprehensive evaluation of TEE (technology, economy and environment) of the production process of the power station.


2014 ◽  
Vol 90 (05) ◽  
pp. 577-585 ◽  
Author(s):  
Francesca Pierobon ◽  
Indroneil Ganguly ◽  
Tommaso Anfodillo ◽  
Ivan L. Eastin

The “carbon neutrality” assumption plays an important role in the evaluation of the global warming potential (GWP) of bioenergy relative to fossil fuels. In the case of woody bioenergy, this assumption implies that the carbon dioxide emitted during the combustion of the biomass is equal to the carbon dioxide sequestered from the atmosphere within that biomass. However, the collection and conversion of woody biomass requires energy inputs in various forms that produce emissions to the air or water. To be able to estimate the overall environmental burdens associated with converting woody biomass to bioenergy, and the net reduction in greenhouse gas (GHG) emissions to the atmosphere by avoiding the use of fossil fuel, a life cycle assessment (LCA) is the internationally recognized method of choice. However, the carbon neutrality of woody biomass and the environmental impacts associated with wood-based bioenergy are hotly debated in national and international arenas. This study presents a comprehensive evaluation of the environmental impacts of woody biomass-based bioenergy and proposes a GWP impact assessment methodology using radiative forcing for incorporating the dynamics of carbon sequestration, decomposition of residues and biomass processing in the life cycle assessment of bioenergy.


Author(s):  
Pham Ky Quang ◽  
Duc Tuan Dong ◽  
Pham Thi Thanh Hai

Life cycle assessment (LCA) is considered a holistic approach in evaluating the environmental impacts of a product in its life cycle. Recently, LCA method has been applied in the shipping and shipbuilding sectors. In order to provide a comprehensive LCA research in the field of naval architecture, this study uses LCA method to assess the environmental performance of a Panamax oil tanker in its whole life cycle. The ship’s life cycle including transportation activities is divided into five phases: raw material extraction & production, shipbuilding, operation, maintenance, and ship’s end of life. CML 2001 is chosen as the life cycle impact assessment methodology. GaBi software is used to obtain the life cycle emission inventory and environmental impacts. The results show the contributions of each life cycle phase to the total life cycle. Detailed emissions and environmental impacts of the ship are also analyzed. Due to huge amount of fuel consumed in ship operation, this phase dominates the emissions and environmental impact, compared with other phases. This study gives to the LCA practitioners a cradle-to-grave LCA example that could be useful for future researches in the field of shipping and shipbuilding sectors.


2021 ◽  
Vol 13 (15) ◽  
pp. 8427
Author(s):  
Bahareh Nikmehr ◽  
M. Reza Hosseini ◽  
Jun Wang ◽  
Nicholas Chileshe ◽  
Raufdeen Rameezdeen

This article provides a picture of the latest developments in providing BIM-based tools for construction and demolition waste (CDW) management. The coverage and breadth of the literature on offering BIM-based tools and technologies for dealing with CDW throughout the whole life cycle of construction are investigated, and gaps are identified. Findings reveal that, although various BIM-based technologies are closely associated with CDW, much of the existing research on this area has focused on the design and construction phase; indeed, the problem of CDW in post-construction stages has received scant attention. Besides, the now available tools and technologies are lacking in cross-phase insights into project waste aspects and are weak in theoretical rigor. This article contributes to the field by identifying the intellectual deficiencies in offering BIM-based tools and technologies when dealing with CDW. So, too, it points to major priorities for future research on the topic. For practitioners, the study provides a point of reference and raises awareness in the field about the most advanced available BIM-based technologies for dealing with CDW problems.


Sign in / Sign up

Export Citation Format

Share Document