scholarly journals Synergistic Effects of DHA and Sucrose on Body Weight Gain in PUFA-Deficient Elovl2 -/- Mice

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 852
Author(s):  
Pauter ◽  
Fischer ◽  
Bengtsson ◽  
Asadi ◽  
Talamonti ◽  
...  

The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) is implicated in theregulation of both lipid and carbohydrate metabolism. Thus, we questioned whether dietary DHAand low or high content of sucrose impact on metabolism in mice deficient for elongation of verylong-chain fatty acids 2 (ELOVL2), an enzyme involved in the endogenous DHA synthesis. Wefound that Elovl2 -/- mice fed a high-sucrose DHA-enriched diet followed by the high sucrose, highfat challenge significantly increased body weight. This diet affected the triglyceride rich lipoproteinfraction of plasma lipoproteins and changed the expression of several genes involved in lipidmetabolism in a white adipose tissue. Our findings suggest that lipogenesis in mammals issynergistically influenced by DHA dietary and sucrose content.

1986 ◽  
Vol 55 (2) ◽  
pp. 287-294 ◽  
Author(s):  
John C. Stanley ◽  
Jacqueline A. Lambadrios ◽  
Eric A. Newsholme

1. The effects of a 100 g/kg dietary substitution of wheat bran on the body-weight gain, food consumption and faecal dry weight of mice given a high-sucrose diet and on the activities of some key enzymes of carbohydrate and lipid metabolism in liver and adipose tissue were studied.2. Wheat bran had no effect on body-weight gain, food consumption or faecal dry weight.3. Wheat bran had no effect on the activities of hepatic glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1. 1.1.44), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1. 1. 1.40), ATP-citrate (pro-3S)-lyase (EC 4.1.3.8), pyruvate kinase (EC 2.7.1.40) and fructose-1, 6-bisphosphatase (EC 3.1.3.11). The activity of hepatic 6-phosphofructokinase (EC 2.7.1.11) increased but only when expressed on a body-weight basis.4. Wheat bran had no effect on the activities of adipose tissue glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+), (ATP-citrate igro-3S)-lyase, hexokinase (EC 2. 7. 1. 1), 6-phosphofructokinase and pyruvate kinase.5. These results suggest that unlike guar gum and bagasse, wheat bran does not change the flux through some pathways of lipogenesis in liver and adipose tissue when mice are given high-sucrose diets.


2000 ◽  
Vol 70 (1) ◽  
pp. 51-61 ◽  
Author(s):  
L. O. W. McClintont ◽  
A. F. Carson

AbstractThis study investigated the efficiency of growth and the carcass characteristics of 24 Greyface (Border Leicester × Scottish Blackface), 24 Texel (12 purebred and 12 Texel × Texel-Greyface) and 24 Rouge (12 purebred and 12 Rouge × Rouge-Greyface) lambs finished on the same level of feeding. The efficiency of live-weight gain (kg/MJ) was higher in Greyface compared with Texel lambs (P< 0·01). The efficiency of empty body-weight gain (kg/MJ) was higher in Greyface (P< 0·01) and Rouge (P< 0·05) compared with Texel lambs. The efficiency of carcass gains (kg/MJ) tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·07). The efficiency of non-carcass component gains (kg/MJ) was also higher in Greyface compared with Texel lambs (P0·05). Carcass water, protein, lipid and ash gains did not vary significantly between the genotypes, however carcass energy gain tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·08). The relative proportions of water, protein, lipid and ash in carcass gains did not vary significantly between the genotypes. At the end of the experiment carcass water content was higher in Texel compared with Greyface lambs (P< 0·05) and carcass ash content was lower in Texel compared with Greyface (P< 0·01) and Rouge (P< 0·05) lambs. The concentration of saturated fatty acids was higher in Greyface compared with Rouge lambs (P< 0·001) and higher in Rouge compared with Texel lambs (P< 0·05). Monounsaturated fatty acid concentrations were higher in Rouge compared with Greyface lambs (P< 0·05) and higher in Texel compared with Rouge lambs (P< 0·001). Polyunsaturated fatty acid concentrations were higher in Rouge and Texel compared with Greyface lambs (P< 0·01). The ratio of n-6:n-3 fatty acids was lower in Rouge compared with Greyface lambs (P< 0·05).The efficiency of empty body gain was higher in male compared with female lambs (P< 0·05). Carcass water (P< 0·01) and protein (P< 0·05) gains were higher in male lambs. At the end of the experiment male carcasses contained a higher content of water (P< 0·05), protein (P< 0·01) and ash (P= 0·07), and a lower lipid (P< 0·05) and energy (P< 0·001) content. Carcass lipids from male lambs contained a higher concentration of polyunsaturated fatty acids (P< 0·001) and tended to contain a lower concentration of saturated fatty acids (P = 0·06).


2021 ◽  
Vol 65 (11) ◽  
pp. 2170027
Author(s):  
Karen Alejandra Méndez‐Lara ◽  
Elisabeth Rodríguez‐Millán ◽  
David Sebastián ◽  
Rosi Blanco‐Soto ◽  
Mercedes Camacho ◽  
...  

2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


2019 ◽  
Author(s):  
Lidewij Schipper ◽  
Steffen van Heijningen ◽  
Giorgio Karapetsas ◽  
Eline M. van der Beek ◽  
Gertjan van Dijk

AbstractIndividual housing from weaning onwards resulted in reduced growth rate during adolescence in male C57Bl/6J mice that were housed individually, while energy intake and energy expenditure were increased compared to socially housed counterparts. At 6 weeks of age, these mice had reduced lean body mass, but significantly higher white adipose tissue mass compared to socially housed mice. Body weight gain of individually housed animals exceeded that of socially housed mice during adulthood, with elevations in both energy intake and expenditure. At 18 weeks of age, individually housed mice showed higher adiposity and higher mRNA expression of UCP-1 in inguinal white adipose tissue. Exposure to an obesogenic diet starting at 6 weeks of age further amplified body weight gain and adipose tissue deposition. This study shows that post-weaning individual housing of male mice results in impaired adolescent growth and higher susceptibility to obesity in adulthood. Mice are widely used to study obesity and cardiometabolic comorbidities. For (metabolic) research models using mice, (social) housing practices should be carefully considered and regarded as a potential confounder due to their modulating effect on metabolic health outcomes.


2020 ◽  
Vol 88 (4) ◽  
pp. 50
Author(s):  
László-István Bába ◽  
Zsolt Gáll ◽  
Melinda Kolcsár ◽  
Zsuzsánna Pap ◽  
Zoltán V. Varga ◽  
...  

Cariprazine (Car) is a recently approved second generation antipsychotic (SGA) with unique pharmacodynamic profile, being a partial agonist at both dopamine D2/3 receptor subtypes, with almost 10 times greater affinity towards D3. SGAs are known to increase body weight, alter serum lipids, and stimulate adipogenesis but so far, limited information about the adverse effects is available with this drug. In order to study this new SGA with such a unique mechanism of action, we compared Car to substances that are considered references and are well characterized: olanzapine (Ola) and aripiprazole (Ari). We studied the effects on body weight and also assessed the adipogenesis in rats. The drugs were self-administered in two different doses to female, adult, Wistar rats for six weeks. Weekly body weight change, vacuole size of adipocytes, Sterol Regulatory Element Binding Protein-1 (SREBP-1) and Uncoupling Protein-1 (UCP-1) expression were measured from the visceral adipose tissue (AT). The adipocyte’s vacuole size, and UCP-1 expression were increased while body weight gain was diminished by Car. by increasing UCP-1 might stimulate the thermogenesis, that could potentially explain the weight gain lowering effect through enhanced lipolysis.


1993 ◽  
Vol 264 (6) ◽  
pp. R1214-R1218 ◽  
Author(s):  
J. M. Gray ◽  
S. Schrock ◽  
M. Bishop

Treatment of ovariectomized rats for 3 days with 2 micrograms estradiol benzoate (E2B), 6 micrograms ethinyl estradiol, or 1-2 mg of either of the antiestrogens nafoxidine or tamoxifen led to similar decreases in food intake, body weight gain, adipose tissue lipoprotein lipase activity, and hepatic fatty acid synthetase activity, despite their different effects on uterine growth and induction of progestin receptors in pituitary and adipose tissue. Longer-term (2 wk) treatment with tamoxifen resulted in similar transient changes in food intake and body weight gain, as did treatment with E2B. Daily administration of 50 micrograms fluphenazine (FLU) led to significant decreases in body weight, although there was no change in food intake. Concurrent administration of FLU with either E2B or tamoxifen led to additive effects on body weight and food intake change. None of the treatments had any effect on in vitro binding of [3H]tamoxifen to antiestrogen binding sites in pooled hypothalamic-preoptic area samples.


2015 ◽  
Vol 308 (4) ◽  
pp. E315-E323 ◽  
Author(s):  
Kana Ohyama ◽  
Yoshihito Nogusa ◽  
Katsuya Suzuki ◽  
Kosaku Shinoda ◽  
Shingo Kajimura ◽  
...  

Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT.


Sign in / Sign up

Export Citation Format

Share Document