scholarly journals Insulin-Induced Cardiomyocytes Hypertrophy That Is Prevented by Taurine via β-alanine-Sensitive Na+-Taurine Symporter

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3686
Author(s):  
Ashley Jazzar ◽  
Danielle Jacques ◽  
Ghassan Bkaily

Although insulin-induced cardiac hypertrophy is reported, very little information is available on the hypertrophic effect of insulin on ventricular cardiomyocytes and the regulation of sodium and calcium homeostasis. Taurine is a non-essential amino acid synthesized by cardiomyocytes and the brain and is present in low quantities in many foods, particularly seafood. The purpose of this study was to investigate whether chronic exposure to insulin induces hypertrophy of ventricular cardiomyocytes that are associated with changes in Na+ and Ca2+ homeostasis and whether taurine pre-treatment prevents these effects. Our results showed that chronic treatment with insulin leads to cardiomyocyte hypertrophy that is associated with an increase in basal intracellular Na+ and Ca2+ levels. Furthermore, long-term taurine treatment prevents morphological and ionic remodeling induced by insulin. In addition, blocking the Na+-taurine co-transporter prevented the taurine antihypertrophic effect. Finally, the insulin-induced remodeling of cardiomyocytes was associated with a decrease in the ratio of phospho-CREB (pCREB) to total cAMP response element binding protein (CREB); taurine prevented this effect. In conclusion, our results show that insulin induces ventricular cardiomyocyte hypertrophy via downregulation of the pCREB/tCREB level and that chronic taurine treatment prevents this effect.

2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Mitsuhiro Nakamura ◽  
Tomoko Suzuki ◽  
Mai Takagi ◽  
Hirotoshi Tamura ◽  
Toshiya Masuda

Bioactive compounds from citrus fruits contribute many benefits to human health. Extracellular signal-regulated kinase (ERK) signaling plays an important role in the regulation of multiple cellular processes. Activation of the ERK-cAMP response element binding protein (CREB) signaling is required for long-term memory formation. In this study, auraptene, phellopterin, thymol, coniferyl alcohol 9-methyl ether and methyl ferulate were isolated from Citrus junos. Among the five compounds isolated, auraptene and phellopterin increased the phosphorylation of ERK and CREB. This study provides, to our knowledge, the first evidence that phellopterin potently stimulates the phosphorylation of ERK and CREB. Phellopterin could be a novel neuroprotective agent.


1998 ◽  
Vol 61 (1-2) ◽  
pp. 69-77 ◽  
Author(s):  
Tatsuo Suzuki ◽  
Nobuteru Usuda ◽  
Hiroshi Ishiguro ◽  
Shigehisa Mitake ◽  
Toshiharu Nagatsu ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chang-Yul Kim ◽  
Yongtaek Seo ◽  
Chan Lee ◽  
Gyu Hwan Park ◽  
Jung-Hee Jang

We have investigated the neuroprotective and memory enhancing effect of [6]-gingerol (GIN), a pungent ingredient of ginger, using an animal model of amnesia. To determine the neuroprotective effect of GIN on cognitive dysfunction, scopolamine (SCO, 1 mg/kg, i.p.) was injected into C57BL/6 mice, and a series of behavioral tests were conducted. SCO-induced behavior changes and memory impairments, such as decreased alteration (%) in Y-maze test, increased mean escape latency in water maze test, diminished step-through latency in passive avoidance test, and shortened freezing time in fear condition test, were significantly prevented and restored by the oral administration of GIN (10 or 25 mg/kg/day). To further verify the neuroprotective mechanism of GIN, we have focused on the brain-derived neurotrophic factor (BDNF). The administration of GIN elevated the protein expression of BDNF, which was mediated via the activation of protein kinase B/Akt- and cAMP-response element binding protein (CREB) signaling pathway. These results suggest that GIN may have preventive and/or therapeutic potentials in the management of memory deficit and cognitive impairment in mice with amnesia.


2001 ◽  
Vol 21 (7) ◽  
pp. 2404-2412 ◽  
Author(s):  
Sheena A. Josselyn ◽  
Chanjun Shi ◽  
William A. Carlezon ◽  
Rachael L. Neve ◽  
Eric J. Nestler ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Jun Yan ◽  
Weilin Xu ◽  
Cameron Lenahan ◽  
Lei Huang ◽  
Jing Wen ◽  
...  

Background and Purpose: Neuronal pyroptosis is a type of regulated cell death triggered by proinflammatory signals. CCR5 (C-C chemokine receptor 5)-mediated inflammation is involved in the pathology of various neurological diseases. This study investigated the impact of CCR5 activation on neuronal pyroptosis and the underlying mechanism involving cAMP-dependent PKA (protein kinase A)/CREB (cAMP response element binding)/NLRP1 (nucleotide-binding domain leucine-rich repeat pyrin domain containing 1) pathway after experimental intracerebral hemorrhage (ICH). Methods: A total of 194 adult male CD1 mice were used. ICH was induced by autologous whole blood injection. Maraviroc (MVC)—a selective antagonist of CCR5—was administered intranasally 1 hour after ICH. To elucidate the underlying mechanism, a specific CREB inhibitor, 666-15, was administered intracerebroventricularly before MVC administration in ICH mice. In a set of naive mice, rCCL5 (recombinant chemokine ligand 5) and selective PKA activator, 8-Bromo-cAMP, were administered intracerebroventricularly. Short- and long-term neurobehavioral assessments, Western blot, Fluoro-Jade C, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunofluorescence staining were performed. Results: The brain expression of CCL5 (chemokine ligand 5), CCR5, PKA-Cα (protein kinase A-Cα), p-CREB (phospho-cAMP response element binding), and NLRP1 was increased, peaking at 24 hours after ICH. CCR5 was expressed on neurons, microglia, and astrocytes. MVC improved the short- and long-term neurobehavioral deficits and decreased neuronal pyroptosis in ipsilateral brain tissues at 24 hours after ICH, which were accompanied by increased PKA-Cα and p-CREB expression, and decreased expression of NLRP1, ASC (apoptosis-associated speck-like protein containing a CARD), C-caspase-1, GSDMD (gasdermin D), and IL (interleukin)-1β/IL-18. Such effects of MVC were abolished by 666-15. At 24 hours after injection in naive mice, rCCL5 induced neurological deficits, decreased PKA-Cα and p-CREB expression in the brain, and upregulated NLRP1, ASC, C-caspase-1, N-GSDMD, and IL-1β/IL-18 expression. Those effects of rCCL5 were reversed by 8-Bromo-cAMP. Conclusions: CCR5 activation promoted neuronal pyroptosis and neurological deficits after ICH in mice, partially through the CCR5/PKA/CREB/NLRP1 signaling pathway. CCR5 inhibition with MVC may provide a promising therapeutic approach in managing patients with ICH.


2021 ◽  
Vol 18 ◽  
Author(s):  
Vivek Kumar Sharma ◽  
Thakur Gurjeet Singh

: Alzheimer’s disease (AD) is a persistent neuropathological stipulation manifested in the form of neuronal/synapse demise, the formation of senile plaques, hyperphosphorylated tau tangles, neuroinflammation, and apoptotic cell death. The absence of a therapeutic breakthrough for AD has continued the quest to find a suitable intervention. Apart from various candidates, the cyclic AMP-protein kinase A-cAMP response element-binding protein (cAMP/PKA/CREB) pathway is the most sought-after drug target AD as the bulk of quality literature documents that there is downregulation of cAMP signaling and CREB mediated transcriptional cascade in AD. cAMP signaling is evolutionarily conserved and can be found in all species. cAMP response element-binding protein (CREB) is a ubiquitous and integrally articulated transcription aspect that regulates neuronal growth, neuronal differentiation/proliferation, synaptic plasticity, neurogenesis, maturation of neurons, spatial memory, long-term memory formation as well as ensures neuronal survival. CREB is a central part of the molecular machinery that has a role in transforming short-term memory to long-term. Besides AD, impairment of CREB signaling has been well documented in addiction, Parkinsonism, schizophrenia, Huntington’s disease, hypoxia, preconditioning effects, ischemia, alcoholism, anxiety, and depression. The current work highlights the role and influence of CREB mediated transcriptional signaling on major pathological markers of AD (amyloid β, neuronal loss, inflammation, apoptosis, etc.). The present work justifies the continuous efforts being made to explore the multidimensional role of CREB and related downstream signaling pathways in cognitive deficits and neurodegenerative complications in general and AD particularly. Moreover, it is reaffirmed that cyclic nucleotide signaling may have vast potential to treat neurodegenerative complications like AD.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Lu ◽  
Jia Liang ◽  
Jun-Ren Wang ◽  
Li Hu ◽  
Ya Tu ◽  
...  

Extracellular signal-regulated kinase (ERK)-cAMP response element binding protein (CREB) signal pathway has been implicated in the pathogenesis of depression. There is growing evidence that acupuncture in traditional Chinese medicine has antidepressant-like effect. However, the effect of acupuncture on ERK-CREB pathway remains unknown. In our study, the antidepressant-like effect of acupuncture treatment was measured by sucrose intake test and open field test in rats exposed to chronic unpredictable mild stress (CUMS) for 4 weeks. The protein levels of ERK1/2, CREB, phosphorylated ERK1/2 (p-ERK1/2), and phosphorylated CREB (p-CREB) in the hippocampus (HP) and prefrontal cortex (PFC) were examined by Western blot analysis. Our results showed that CUMS rats exhibited the reduction in behavioral activities, whereas acupuncture stimulation at acupoints Baihui (Du20) and Neiguan (PC6) reversed the behavioral deficit. In addition, exposure to CUMS resulted in the decrease of p-ERK1/2 and p-CREB in the HP and PFC. Acupuncture increased the ratio of p-ERK1/2 to ERK1/2 and the ratio of p-CREB to CREB in the HP and PFC. Our study suggested that one potential way, by which acupuncture had antidepressant-like effect, might be mediated by activating the ERK-CREB pathway in the brain.


Sign in / Sign up

Export Citation Format

Share Document