scholarly journals Multivariate Statistical Optimization of Tablet Formulations Incorporating High Doses of a Dry Herbal Extract

Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 79 ◽  
Author(s):  
Euichaul Oh ◽  
Uijung Kim ◽  
Beom-Jin Lee ◽  
Cheol Moon

The development of oral tablet formulation for herbal medicines has been restricted by large drug loadings and the poor physicochemical and mechanical properties of dry herbal extracts (DHEs). Herein, statistical experimental designs were applied to herbal tablet formulation development and optimization using Wuzi Yanzong dry extract (WYE). The tablet disintegration time and hardness were identified as the critical quality attributes (CQAs) of the product. The tablet formulation was designed to achieve a high drug loading (50% or higher of WYE), shorter tablet disintegration time (less than 30 minutes), and suitable hardness (6.0 to 7.5 kp). A D-optimal mixture design was used to evaluate the effects of excipients on CQAs to minimize the risk compression failure and improve the tabletability in formulations containing WYE at 50% and 65% by weight. A partial least squares model was used to elucidate the multivariate relationships between a large number of formulation variables and product CQAs, and determine the maximum possible WYE loading. From overlaid plots of the effects of formulation variables on CQAs, it was found that a maximum WYE loading of 67% in tablet formulation satisfied the acceptance criteria of CQAs. In conclusion, this study shows that multivariate statistical tools are useful for developing tablet formulations containing high doses of herbal extracts and establishing control strategies that ensure product quality.

2007 ◽  
Vol 7 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Alija Uzunović ◽  
Edina Vranić

Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates.The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked.During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation), previously proposed by Moore and Flanner.Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response.


2019 ◽  
Author(s):  
Riffat Yasmin ◽  
Muhammad Harris Shoaib ◽  
Farrukh Rafiq Ahmed ◽  
Faaiza Qazi ◽  
Huma Ali ◽  
...  

ABSTRACTObjective of this study was based on the formulation development of fast dispersible Aceclofenac tablets (100mg) and to evaluate the influence of pharmaceutical mixtures of directly compressible Avicel PH102 with Mannitol and Acdisol on the compressional, mechanical characteristics and drug release properties. Fifteen different aceclofenac formulations were developed by central composite rotatable design (CCRD). Among them best possible formulations (FA–FH) were selected on the basis of micromeritic properties, appropriate tablet weight and disintegration time for further study. Tablets were compressed by direct compression method using hand held hydraulic press with a compressional force ranging from 8 to 80 MN/m2 (MPa). Pre and post compression studies were performed and the compressed formulations (FA-FH) were assessed for different quality tests. The Heckel and Kawakita equations were applied for determination of compressional behavior of formulations. The quality attributes suggested that formulation (FB) containing avicel PH 102 (20%), mannitol (25%) and ac-di-sol (3%) as best optimized formulation showing better mechanical strength i.e. hardness 37.75 ± 0.14N, tensile strength 5.67MN/m2 and friability 0.34%. Furthermore, compressional analysis of FB showed lowest PY value 59.52 MN/m2 and Pk value 1.040 MN/m indicating plasticity of the material. Formulation FB disintegrated rapidly within 21 seconds and released 99.92 % drug after 45min in phosphate buffer pH 6.8. Results of drug release kinetics showed that formulations FA-FH followed Weibull and First-order models in three different dissolution media. Avicel based formulation mixture exhibit excellent compactional strength with rapid disintegration and drug release.


2014 ◽  
Vol 50 (4) ◽  
pp. 956-963
Author(s):  
Rajamma Abburu Jayaramu ◽  
Sateesha Shivally Boregowda ◽  
Addanki Rahul Deva Varma ◽  
Chandan Kalegowda

Formulation of FDT (fast dispersing tablets) of nebivolol was optimized and evaluated using simplex lattice design (SLD). The influence of type and concentration of three disintegrants viz.,Ac-Di-Sol, Primojel and Polyplasdone XL on hardness, friability and disintegration time of tablet was studied. Response surface plot and the polynomial equations were used to evaluate influence of polymer on the tablet properties. Results were statistically analyzed using ANOVA, and a p < 0.05 was considered statistically significant. Results reveal that fibrous integrity and optimal degree of substitution in Primojel and Ac-Di-Sol are mainly responsible for the hardness of the tablet. Use of Polyplasdone in higher percentage in tablet formulation may result in high friability. Increase in concentration of Ac-Di-Sol increases the disintegration time but increased concentration of Primojel in the tablet formulation decreases the disintegration time. This is also evident from model terms for disintegration time with a high 'F' value of 14.69 and 'p' value of 0.0031 (<0.05). The reason could be that Primojel has higher swelling properties and an optimum hydration capacity, which favors fast disintegration of a tablet. In conclusion, careful selection of disintegrant for FDT could improve their properties. Use of Simplex Lattice Design for formulation development could simplify the formulation process and reduce the production cost.


2011 ◽  
Vol 197-198 ◽  
pp. 127-130 ◽  
Author(s):  
Vipaluk Patomchaiviwat ◽  
Piriyaprasarth Suchada ◽  
Koorattanasiri Popporn ◽  
Kanoknirumdom Supaporn ◽  
Rattanasiha Achara

The purpose of this study was to investigate the disintegrating properties of native arrowroot starch and pregelatinized arrowroot starch in comparison with corn starch and sodium starch glycolate (Explotab®). Tablets were prepared by direct compression. The tablet formulations contained dibasic calcium phosphate as filler and magnesium stearate as lubricant. Each starch at various concentrations between 2-10 % w/w was used in formulation as disintegrant. The swelling volume and weight of starches and disintegration time of tablets were evaluated. At 2% w/w concentration of starch, the pregelatinizaed starch provided disintegration time faster than the native starch (2.5 times). The disintegration time of 2% w/w pregelatinized arrowroot starch was comparable to Explotab and faster than that of native starch. The disintegration time of native starch at the concentration of 4, 6 and 10 %w/w was comparable to that of corn starch and Explotab®. Native arrowroot starch and pregelatinized arrowroot starch could be used as effective disintegrants in tablet formulation.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 108
Author(s):  
Tanikan Sangnim ◽  
Pornsak Sriamornsak ◽  
Inderbir Singh ◽  
Kampanart Huanbutta

Dysphagia refers to difficulty swallowing certain foods, liquids, or pills. It is common among the elderly with chronic diseases who need to take drugs for long periods. Therefore, dysphagia might reduce compliance with oral drug administration in the aging population. Many pharmaceutical companies search for new products to serve as swallowing aids. Existing products are expensive and do not suit all geriatric patients. Therefore, this study aimed to develop and investigate pill swallowing aid gels prepared from carboxymethyl cellulose and chitosan. We formulated gels by dissolving different concentrations of carboxymethyl cellulose and low or high molecular weight chitosan in solvents to find appropriate gel rheology properties. We then added several portions of glycerin as the glidant of the formulation. We found that the optimized gel formulation was 6.25% (w/w) chitosan with a molecular weight of 80–120 kDa dissolved in 1.2% acetic acid and 4% (w/w) glycerin. The developed pill swallowing gel’s rheology was pseudoplastic with a viscosity of 73.74 ± 3.20 Pa⸱s. The developed chitosan gel had enhanced flow ability; it allowed the pill to cross a 300 mm tube within 6 s, while the reference product took 3 s. Even though the reference product could carry the pill in the tube faster, the chitosan gel better covered the pill, making it more convenient to use. Finally, using a theophylline tablet as a model tablet dosage form, we assessed the gel’s effect on drug disintegration and dissolution. The chitosan gel delayed the tablet disintegration time by about 3–7 min and slightly affected the theophylline dissolution rate. Lastly, all gels were physically stable after a month of storage in the stress condition. These results show the feasibility of manufacturing a chitosan gel usable as a pill swallowing gel for patients with dysphagia.


Author(s):  
Gopinath E

Objective: The objective of the present work was to develop and evaluate a new, low-cost effective superdisintegrant from Musa acuminata fruit for tablet formulation.Methods: The study involved collection of M. acuminata fruit powdered and evaluated for physicochemical properties. Propranolol Hcl was used as a model drug for tablet formulation. Different concentrations of M. acuminatea powder were used as superdisintegrant, and orodispersible tablet is prepared and evaluated. In the present study, sodium starch glycolate was used as synthetic superdisintegrant for comparative study.Result: The powder was dark brownish and did not change throughout the study. The percentage porosity of powder was found to be 42.88% and angle of repose of was found to be 33.69°. The solubility study shows that the powders are sparingly soluble in water and disperse into individual particles. Total ash and acid insoluble ash values of powder were found to be 2.61 and 2.11% w/w, respectively. The average weight of tablets was ranged from 101.42 to 103.52 mg and averaged hardness was found to be 3.4 kg/cm2. Moreover, the tablets exhibited acceptable friability. Disintegration time of all formulations was found to be in the range of 22–80 s and wetting time was found to be 07–18 s.Conclusion: From the study, it was concluded that M. acuminatea powder in the range of 2–12% can be used as superdisintegrant in orodispersible tablet formulation and shall be preferred as having nutritive value as well as cost profit in the development of orodispersible tablet than synthetic polymer.


2007 ◽  
Vol 57 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Gbenga Alebiowu ◽  
Oludele Itiola

Influence of process variables on release properties of paracetamol tablets A 23 factorial experimental design has been used to quantitatively study individual and interaction effects of the nature of binder (N), binder concentration (c) and relative density of tablet (d) on the disintegration time (DT) and dissolution times, t1, t50 and t90, of paracetamol tablet formulations. The factorial design was also used to study the quantitative effects of pregelatinization of starch binders on these parameters, i.e., N, c and d. In general, the most common ranking of the individual effects on DT, t1, t50 and t90 for native/native, pregelatinized/pregelatinized and native/pregelatinized starch binder formulations was c > d > N. For interaction effects, the most common ranking was N-c > c-d > N-d for all formulations. The results generally showed that c can considerably affect DT, t1, t50 and t90 of the tablets.


2021 ◽  
Vol 20 (1) ◽  
pp. 31-39
Author(s):  
Oluyemisi Adebowale Bamiro ◽  
Aishat Oyinkansola Salisu ◽  
Ese Mary Iyere ◽  
Olatundun Atoyegbe ◽  
Olutayo Ademola Adeleye ◽  
...  

The aim of the work was to characterize chitosan extracted from snail shell and evaluate its use as a disintegrant and binder in metronidazole tablet formulation in comparison with standard chitosan (SC). The mechanical properties were assessed using crushing strength and friability, while the release properties were assessed using disintegration and dissolution times. The extracted chitosan (EC) was crystalline in nature and the scanning electron microscopy (SEM) showed polygonal particles with rough surface. The moisture and swelling capacity was 1.80% and 15.00%, respectively. The densities and flow properties were significantly (p<0.05) higher than those of the SC. As a binder, the crushing strength of formulations containing EC was higher than SC, but both formulation failed friability test. There was significant difference between the disintegration times of the metronidazole formulations containing EC and SC as a disintegrant. The result showed that EC is more effective as a binder in tablet formulations. Dhaka Univ. J. Pharm. Sci. 20(1): 31-39, 2021 (June)


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Gallant K. L. Chan ◽  
Winnie W. H. Hu ◽  
Zoey X. Zheng ◽  
M. Huang ◽  
Yan X. Y. Lin ◽  
...  

Dementia is a persistent disorder of the mental processes and is strongly related to depression. However, the performance of current antidepression medicine is far from satisfactory. Herbal extract provides an excellent source to identify compounds for possible drug development against depression. Here, HerboChips were employed to search herbal compounds that could bind nerve growth factor (NGF). By screening over 500 types of herbal extracts, the water extract of Ginkgo Folium, the leaf of Ginkgo biloba, showed a strong binding to NGF. The herbal fractions showing NGF binding were further isolated and enriched. By using LC-MS/MS analysis, one of the NGF binding fractions was enriched, which was further identified as quercetin, a major flavonoid in Ginkgo Folium. Quercetin, similar to Ginkgo Folium extract, could enhance the effect of NGF in cultured PC 12 cells, including potentiation of neurite outgrowth and phosphorylation of Erk-1/2. This is the first report of discovering an NGF binding compound by using HerboChips from herbal extracts, which could be further developed for antidepression application.


Sign in / Sign up

Export Citation Format

Share Document